Question	Scheme	Marks	AOs
6(a)	Need \mathbf{k} component to be zero at ground, so $0.84+0.8 \lambda-\lambda^{2}=0 \Rightarrow \lambda=\ldots$	M1	1.1b
	$\lambda=-\frac{3}{5}, \frac{7}{5}$, but $\lambda \geqslant 0$ so $\lambda=\frac{7}{5}$	A1	1.1b
		(2)	
(b)	Direction is $(9-4.6 \times 1.4) \mathbf{i}+15 \mathbf{j}+(0.8-2 \times 1.4)$ $=2.56 \mathbf{i}+15 \mathbf{j}-2 \mathbf{k}$ or $\frac{64}{25} \mathbf{i}+15 \mathbf{j}-2 \mathbf{k}$	B1ft	2.2a
		(1)	
(c)	Direction perpendicular to ground is $a \mathbf{k}$, so angle to perpendicular is given by $(\cos \theta)=\frac{a \mathbf{k} \cdot(2.56 \mathbf{i}+15 \mathbf{j}-2 \mathbf{k})}{a \times\|2.56 \mathbf{i}+15 \mathbf{j}-2 \mathbf{k}\|}$ or $\frac{\left(\begin{array}{c}2.56 \\ 15 \\ -2\end{array}\right) \cdot\left(\begin{array}{l}0 \\ 0 \\ a\end{array}\right)}{\left(\begin{array}{c}2.56 \\ 15 \\ -2\end{array}\left\|\left\|\begin{array}{l}0 \\ 0 \\ a\end{array}\right\|\right.\right.}$ or angle between $\left(\begin{array}{c}2.56 \\ 15 \\ -2\end{array}\right)$ and $\left(\begin{array}{c}2.56 \\ 15 \\ 0\end{array}\right)$ is given by $(\cos \theta)=\frac{\left(\begin{array}{c}2.56 \\ 15 \\ -2\end{array}\right)\left(\begin{array}{c}2.56 \\ 15 \\ 0\end{array}\right)}{\left\|\begin{array}{cc\|cc}2.56 & 2.56 \\ 15 & 15 \\ -2 & \|\|c\|\end{array}\right\|}$	M1	1.1b
	$\begin{gathered} =\frac{-2}{\sqrt{2.56^{2}+15^{2}+(-2)^{2}}}(=-0.130 \ldots) \\ \text { Or } \\ =\frac{231.5536}{\sqrt{2.56^{2}+15^{2}+(-2)^{2}} \sqrt{2.56^{2}+15^{2}+(0)^{2}}}=0.991 \ldots \end{gathered}$	M1	1.1b
	$\begin{gathered} 90^{\circ}-\arccos \left({ }^{\prime}-0.130 \ldots .^{\prime}\right)=-7.48 \ldots \\ \text { or } \\ \arccos (0.991 \ldots) \end{gathered}$	ddM1	3.1b
	So the tennis ball hits ground at angle of 7.5° (1d.p.) cao	A1	3.2a
	Alternative Finds the length of the vector in the $\mathbf{i j}$ plane $=\sqrt{2.56^{2}+15^{2}}$	M1	1.1b
	$\tan \theta=\frac{2}{\sqrt{2.56^{2}+15^{2}}}$	M1	1.1b
	$\theta=\arctan \left(\frac{2}{\sqrt{2.56^{2}+15^{2}}}\right)$ or $\theta=90-\arctan \left(\frac{\sqrt{2.56^{2}+15^{2}}}{2}\right)$	ddM1	3.1b

	So the tennis ball hits ground at angle of 7.5° (1d.p.)	A1	3.2a
		(4)	
(d)	In same plane as net when $\mathbf{r} . \mathbf{j}=0$, $\begin{gathered} \left(\begin{array}{c} -4.1+9 \lambda-2.3 \lambda^{2} \\ -10.25+15 \lambda \\ 0.84+0.8 \lambda-\lambda^{2} \end{array}\right) \bullet\left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right) \text { leading to }-10.25+15 \lambda=0 \Rightarrow \lambda=\ldots \\ \left(=\frac{41}{60}=0.683333 \ldots\right) \end{gathered}$	M1	3.1b
	So is at position $\left(-4.1+9 \times \frac{41}{60}-2.3\left(\frac{41}{60}\right)^{2}\right) \mathbf{i}+0 \mathbf{j}+\left(0.84+0.8 \times \frac{41}{60}-\left(\frac{41}{60}\right)^{2}\right) \mathbf{k}$	M1	1.1b
	$\begin{aligned} & =\text { awrt } 0.976 \mathbf{i}+\text { awrt } 0.920 \mathbf{k} \quad \text { or }=\text { awrt } 0.976 \mathbf{i}+0.92 \mathbf{k} \text { (to } 3 \text { s.f.) } \\ & \text { or }=\text { awrt } 0.976 \mathbf{i}+\frac{3311}{3600} \mathbf{k} \end{aligned}$	A1	1.1b
		(3)	
(e)	Modelling as a line, height of net is 0.9 m along its length so as $0.92>0.9$ the ball will pass over the net according to the model.	B1ft	3.2a
		(1)	
(f)	Identifies a suitable feature of the model that affects the outcome And uses it to draw a compatible conclusion. For example - The ball is not a particle and will have diameter/radius, therefore it will hit the net and not pass over. - As above, but so the ball will clip the net but it's momentum will take it over as it is mostly above the net. - The model says that the ball will clear the net by 2 cm which may be smaller than the balls diameter - The net will not be a straight line/taut so will not be 0.9 m high, so the ball will have enough clearance to pass over the net.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 3.2 b \\ & 2.2 b \end{aligned}$
		(2)	

(13 marks)

Notes:

Accept any alternative vector notations throughout.

(a)

M1: Attempts to solve the quadratic from equating the \mathbf{k} component to zero.
A1: Correct value, must select positive root, so accept 1.4 oe.
Correct answer only M1 A1
(b)

B1ft: For $(2.56,15,-2)$ o.e or follow through $\left(9-4.6 x^{\prime} \lambda^{\prime}, 15,0.8-2 x^{\prime} \lambda^{\prime}\right)$ for their λ.
(c)

M1: Recognises the angle between the perpendicular and direction vector is needed, and identifies the perpendicular as $a \mathbf{k}$ for any non-zero a (including 1), and attempts dot product

Alternatively recognises the dot product of $(2.56,15,-2)$ and $(2.56,15,0)$
M1: Applies the dot product formula $\frac{a \bullet b}{|a||b|}$ correctly between any two vectors, but must have dot product and modulus evaluated.
ddM1: Dependent on both previous marks. A correct method to proceed to the required angle, usually $90^{\circ}-\arccos ('-0.130 \ldots$...') as shown in scheme but may e.g. use $\sin \theta$ instead of $\cos \theta$ in formula.
Alternatively is using dot product of $(2.56,15,-2)$ and $(2.56,15,0)$ finds $\arccos (0.991 \ldots)$
A1: For 7.5° cao
Alternative
M1: Finds the length of the vector in the $\mathbf{i j}$ plane.
M1: Finds the tan of any angle the
ddM1: Dependent on both previous marks. Finds the required angle
A1: For 7.5° cao
(d)

M1: Attempts to find value of λ that gives zero \mathbf{j} component.
M1: Uses their value of λ in the equation of the path to find position.
A1: Correct position.
(e)

B1ft: States that $0.920>0.9$ so according to the model the ball will pass over the net. Follow through on their \mathbf{k} component and draws an appropriate conclusion. May stay the value of $\mathrm{k}>$ 0.92
(f)

M1: There must be some reference to the model to score this mark. See scheme for examples. It is likely to be either the ball is not a particle, or the top of the net is not a straight line. Accept references to the ball crossing a long way from the middle.
Do not accept reasons such as "there may be wind/air resistance" as these are not referencing the given model.
A1: For a reasonable conclusion based on their reference to the model.

For example

The ball is not a particle; therefore, it will not go over the net is M1A0 as not explained why - needs reference to radius/diameter

