Question	Scheme	Marks	AOs
6(a)	Need k component to be zero at ground, so $0.84 + 0.8\lambda - \lambda^2 = 0 \Longrightarrow \lambda =$	M1	1.1b
	$\lambda = -\frac{3}{5}, \frac{7}{5}, \text{ but } \lambda \ge 0 \text{ so } \lambda = \frac{7}{5}$	A1	1.1b
		(2)	
(b)	Direction is $(9-4.6 \times 1.4)\mathbf{i} + 15\mathbf{j} + (0.8 - 2 \times 1.4)$ = 2.56 $\mathbf{i} + 15\mathbf{j} - 2\mathbf{k}$ or $\frac{64}{25}\mathbf{i} + 15\mathbf{j} - 2\mathbf{k}$	B1ft	2.2a
		(1)	
(c)	Direction perpendicular to ground is $a\mathbf{k}$, so angle to perpendicular is given by $(\cos \theta) = \frac{a\mathbf{k}.(2.56\mathbf{i}+15\mathbf{j}-2\mathbf{k})}{a \times [2.56\mathbf{i}+15\mathbf{j}-2\mathbf{k}]}$ or $\frac{\begin{pmatrix} 2.56\\15\\-2 \end{pmatrix} \cdot \begin{pmatrix} 0\\0\\a \end{pmatrix}}{\begin{vmatrix} 2.56\\15\\-2 \end{vmatrix}} \cdot \begin{pmatrix} 0\\a\\a \end{vmatrix}$ or angle between $\begin{pmatrix} 2.56\\15\\-2 \end{pmatrix}$ and $\begin{pmatrix} 2.56\\15\\0 \end{pmatrix}$ is given by $(\cos \theta) = \frac{\begin{pmatrix} 2.56\\15\\-2 \end{pmatrix} \cdot \begin{pmatrix} 2.56\\15\\-2 \end{pmatrix} \cdot \begin{pmatrix} 2.56\\15\\0 \end{pmatrix}}{\begin{vmatrix} 2.56\\15\\-2 \end{vmatrix}} \cdot \begin{pmatrix} 2.56\\15\\0 \end{pmatrix}}{\begin{vmatrix} 2.56\\15\\-2 \end{vmatrix}$	M1	1.1b
	$= \frac{-2}{\sqrt{2.56^2 + 15^2 + (-2)^2}} (= -0.130)$ Or $= \frac{231.5536}{\sqrt{2.56^2 + 15^2 + (-2)^2}} = 0.991$	M1	1.1b
	90° - $\arccos(-0.130) = -7.48$ or $\arccos(0.991)$	ddM1	3.1b
	So the tennis ball hits ground at angle of 7.5° (1d.p.) cao	Al	3.2a
	Alternative Finds the length of the vector in the ij plane = $\sqrt{2.56^2 + 15^2}$	M1	1.1b
	$\tan\theta = \frac{2}{\sqrt{2.56^2 + 15^2}}$	Ml	1.1b
	$\theta = \arctan\left(\frac{2}{\sqrt{2.56^2 + 15^2}}\right)$ or $\theta = 90 - \arctan\left(\frac{\sqrt{2.56^2 + 15^2}}{2}\right)$	ddM1	3.1b

	So the tennis ball hits ground at angle of 7.5° (1d.p.)	A1	3.2a
		(4)	
(d)	In same plane as net when $\mathbf{r} \cdot \mathbf{j} = 0$, $\begin{pmatrix} -4.1 + 9\lambda - 2.3\lambda^2 \\ -10.25 + 15\lambda \\ 0.84 + 0.8\lambda - \lambda^2 \end{pmatrix} \bullet \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ leading to } -10.25 + 15\lambda = 0 \Longrightarrow \lambda = \dots$ $\begin{pmatrix} = \frac{41}{60} = 0.683333\dots \end{pmatrix}$	M1	3.1b
	So is at position $\left(-4.1+9\times\frac{41}{60}-2.3\left(\frac{41}{60}\right)^{2}\right)\mathbf{i}+0\mathbf{j}+\left(0.84+0.8\times\frac{41}{60}-\left(\frac{41}{60}\right)^{2}\right)\mathbf{k}$	M1	1.1b
	= awrt 0.976 i + awrt 0.920 k or = awrt 0.976 i + 0.92 k (to 3 s.f.) or = awrt 0.976 i + $\frac{3311}{3600}$ k	A1	1.1b
		(3)	
(e)	Modelling as a line, height of net is 0.9m along its length so as 0.92 > 0.9 the ball will pass over the net according to the model.	B1ft	3.2a
		(1)	
(f)	 Identifies a suitable feature of the model that affects the outcome And uses it to draw a compatible conclusion. For example The ball is not a particle and will have diameter/radius, therefore it will hit the net and not pass over. As above, but so the ball will clip the net but it's momentum will take it over as it is mostly above the net. The model says that the ball will clear the net by 2cm which may be smaller than the balls diameter The net will not be a straight line/taut so will not be 0.9m high, so the ball will have enough clearance to pass over the net. 	M1 A1	3.2b 2.2b
		(2)	
		(13 r	narks)
 (a) M1: Atter A1: Correct ar (b) B1ft: For (c) M1: Reco 	The provided HTML matrix the perpendicular and direction vector is needed, berpendicular as $a\mathbf{k}$ for any non-zero a (including 1), and attempts dot products the provided HTML matrix of the perpendicular and attempts dot products the perpendicular and attempts dot products the perpendicular and perpendicular and attempts dot products the perpendicular and perpendicular and perpendicular and perpendicular and attempts dot products the perpendicular and perpendicular and perpendicular and perpendicular and perpendicular and perpendicular and perpendicular attempts dot products the perpendicular and perpendicular and perpendicular attempts dot products the perpendicular attempts dot pe	and ident	ifies

Alternatively recognises the dot product of (2.56, 15, -2) and (2.56, 15, 0)

M1: Applies the dot product formula $\frac{a \cdot b}{|a||b|}$ correctly between *any* two vectors, but must have dot

product and modulus evaluated.

ddM1: Dependent on both previous marks. A correct method to proceed to the required angle, usually $90^{\circ} - \arccos(-0.130...)$ as shown in scheme but may e.g. use $\sin \theta$ instead of $\cos \theta$ in formula.

Alternatively is using dot product of (2.56, 15, -2) and (2.56, 15, 0) finds $\arccos(0.991...)$

A1: For 7.5° cao

Alternative

M1: Finds the length of the vector in the ij plane.

M1: Finds the tan of any angle the

ddM1: Dependent on both previous marks. Finds the required angle

A1: For 7.5° cao

(**d**)

M1: Attempts to find value of λ that gives zero **j** component.

M1: Uses their value of λ in the equation of the path to find position.

A1: Correct position.

(e)

B1ft: States that 0.920 > 0.9 so according to the model the ball will pass over the net. Follow through on their **k** component and draws an appropriate conclusion. May stay the value of k > 0.92

(f)

M1: There must be some reference to the model to score this mark. See scheme for examples. It is likely to be either the ball is not a particle, or the top of the net is not a straight line. Accept references to the ball crossing a long way from the middle.

Do not accept reasons such as "there may be wind/air resistance" as these are not referencing the given model.

A1: For a reasonable conclusion based on their reference to the model.

For example

The ball is not a particle; therefore, it will not go over the net is M1A0 as not explained why – needs reference to radius/diameter