Question	Scheme	Marks	AOs
7	For $n = 1: \begin{pmatrix} 1-6 \times 1 & 9 \times 1 \\ -4 \times 1 & 1+6 \times 1 \end{pmatrix} = \begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix} = \begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix}^{1}$	B1	2.2a
	So the statement is true for $n = 1$		
	Assume true for $n = k$,		
	Assume $\begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix}^k = \begin{pmatrix} 1-6k & 9k \\ -4k & 1+6k \end{pmatrix}$	M1	2.5
	$ \begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix}^{k+1} = \begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix}^{k} \times \begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix} \text{ OR } \begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix} \times \begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix}^{k} $	M1	2.1
	$= \begin{pmatrix} 1-6k & 9k \\ -4k & 1+6k \end{pmatrix} \times \begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix} = \begin{pmatrix} -5+30k-36k & 9-54k+63k \\ 20k-4-24k & -36k+7+42k \end{pmatrix}$ OR $= \begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix} \times \begin{pmatrix} 1-6k & 9k \\ -4k & 1+6k \end{pmatrix} = \begin{pmatrix} -5+30k-36k & -45k+9+54k \\ -4+24k-28k & -36k+7+42k \end{pmatrix}$	M1	1.1b
	Achieves from fully correct working = $\begin{pmatrix} -5-6k & 9+9k \\ -4-4k & 7+6k \end{pmatrix}$	A1	1.1b
	$= \begin{pmatrix} 1-6(k+1) & 9(k+1) \\ -4(k+1) & 1+6(k+1) \end{pmatrix}$ Hence the result is true for $n = k+1$. Since it is <u>true for $n = 1$, and if</u> <u>true for $n = k$ then true for $n = k+1$, thus by mathematical induction</u> the <u>result holds for all $n \in \mathbb{N}$</u>	Alcso	2.4
		(6)	
	(6 marks)		

Notes:

(a) B1: Shows the statement is true for n = 1. Accept as minimum $\begin{pmatrix} 1 - 1 \end{pmatrix}$

$$\begin{pmatrix} 1-6 & 9 \\ -4 & 1+6 \end{pmatrix} = \begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix}$$

M1: Makes the inductive assumption, assume true n = k. This may appear in the conclusion.

M1: A correct statement for
$$\begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix}^{k+1}$$
 in terms of $\begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix}^k$, can be either way round.
Can be implied by $\begin{pmatrix} 1-6k & 9k \\ -4k & 1+6k \end{pmatrix} \times \begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix}$ or $\begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix} \times \begin{pmatrix} 1-6k & 9k \\ -4k & 1+6k \end{pmatrix}$

- M1: Carries out the multiplication correctly, condone sign slips
- A1: Correct simplified matrix from fully correct working
- A1: Completes the inductive argument by showing clearly the matrix has the correct form (must have (k + 1) factors in terms) or uses the result with n = k + 1 and shows that their result is the same.

Conclusion conveying **all** three underlined points or equivalent at some point in their argument. Depends on all three M's and A marks but can be scored without the B mark as long as it is stated true for n = 1