Question	Scheme	Marks	AOs
8(a)	<i>a</i> = 4	B1	3.3
		(1)	
(b)	Model A: (i) Widest point will be 4 (cm) from the base	B1	3.4
	(ii) Width at widest point is 12 (cm) $(2 \times (a'+2) \text{ ft})$	B1ft	3.4
	Model B: (i) $y = 4 + \frac{x^3 - 64x}{100} \Rightarrow \frac{dy}{dx} = \frac{3x^2 - 64}{100}$	M1	3.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow x = \pm \sqrt{\frac{64}{3}} = \pm \frac{8\sqrt{3}}{3} = \pm a \mathrm{wrt} 4.62$	A1	1.1b
	So max width is a distance $8 - \frac{8}{\sqrt{3}} = 8 - \frac{8\sqrt{3}}{3} \approx 3.38$ (cm) from base.	A1	3.4
	(ii) $y _{-4.61} = 4 + \frac{(-4.62)^3 - 64(-4.62)}{100} =$	dM1	3.4
	= 5.97 so diameter is approximately 11.9 (cm) $[2a+3.94 \text{ ft}]$	Alft	3.2a
		(7)	
(c)	Model A and model B both have diameters closed to 12 Model B distance from base is closer to 3 than Model A so is more appropriate.	B1ft	3.5b
		(1)	
(d)	$V_{\rm B} = \pi \int_{-8}^{8} y^2 \mathrm{d}x = \pi \int_{-8}^{8} \left(4 + \frac{x^3 - 64x}{100} \right)^2 \mathrm{d}x = \dots$	B1	1.1b
	$= \frac{\{\pi\}}{10000} \int_{(-8)}^{(8)} 400^2 + x^6 + 64^2 x^2 + 2(400x^3 - 400 \times 64x - 64x^4) dx$ $= \frac{\{\pi\}}{10000} \int_{(-8)}^{(8)} 160000 + x^6 + 4096x^2 + 800x^3 - 51200x - 128x^4 dx$ $= \{\pi\} \int_{(-8)}^{(8)} 16 + \frac{x^6}{10000} + \frac{4096}{10000}x^2 + \frac{8}{100}x^3 - \frac{512}{100}x - \frac{128}{10000}x^4 dx$ $= \{\pi\} \int_{(-8)}^{(8)} 16 + \frac{x^6}{1000} + \frac{256}{625}x^2 + \frac{2}{25}x^3 - \frac{128}{25}x - \frac{8}{625}x^4 dx$ $= \{\pi\} \int_{(-8)}^{(8)} 16 + \frac{8x(x-8)(x+8)}{100} + \left(\frac{x(x-8)(x+8)}{100}\right)^2 dx$	M1	1.1b
	$=\frac{\{\pi\}}{10000} \left[160000x + \frac{x^7}{7} + 4096\frac{x^3}{3} + 800\frac{x^4}{4} - 51200\frac{x^2}{2} - 128\frac{x^5}{5}\right]_{(-8)}^{(8)}$	dM1	1.1b

		(15 marks)	
		(1)	
(e)	(e) Compares their volume to 900 or compares their volume + 100 to 1 litre or 1000 and comments appropriately.		3.5a
		(5)	
	$= awrt 905(cm^3) cso$	A1	1.1b
	$=\frac{\{\pi\}}{10000} (620583.002258983.01) \approx \frac{2879566\pi}{10000}$	M1	3.4
	$= \left\{\pi\right\} \left[16x + \frac{x^7}{70000} + \frac{256}{1875}x^3 + \frac{1}{50}x^4 - \frac{64}{25}x^2 - \frac{8}{3125}x^5\right]_{(-8)}^{(8)}$		

Notes:

Units not required in this question

(a)

B1: For a = 4, ignore any reference to units.

(b)

B1: Correct distance from base for Model A is 4

B1ft: Correct width at widest point. Follow through their 'a', so $2 \times ('a'+2)$.

M1: Attempts the derivative for Model B's equation, reduce any power by 1

A1: Sets $\frac{dy}{dx} = 0$ and finds correct x coordinate of the stationary point (accept ±)

A1: For $8 - \frac{8}{\sqrt{3}}$ or awrt 3.38 cso

dM1: Dependent on previous M mark. Uses their value of *x* to find the value of *y*. If no working shown the value of *y* must come from their *x* value.

Note using x = 4.62 give y = 2.029...

A1: Correct diameter, awrt 11.9 follow through their 'a', so [2a+3.94... ft]

Note: Correct answers with no working send to review

Trial and error approach

Candidates could score B1 B1 for model A however if working in integers it is unlikely that they will find the correct value for x (they are using x = -5) not a valid method M0A0A0dM0A0

(c)

- **B1ft: They must have answers for all parts in (b).** Accept any well-reasoned comment that follows their answers to (b) If the answers are correct, they must conclude that model B is more appropriate.
 - If answers for one model are correct ish but other incorrect, or one value is clearly closer For example

	Distance (3)	Diameter (12)	Distance (3)	Diameter (12)
Α	9.4	9.05	4	6
В	3.38	12.06	4.62	4.06
Conclusion	Selects B as distance/diameter closet		Select A as diameter closest	

• If distances and diameters are similar selects the model which has the most appropriate value for distance or diameter For example

Distance (3) Dia	neter (12) Distance (3)	Diameter (12)
------------------	-------------------------	---------------

Α	0.76	6.8	4	20
В	1.28	10.5	3.38	19.94
Conclusion	selects B as the diameter is closet		Selects B as distance is closet	

• If all values of the distances and diameters are varied any sensible reason stated for selecting a model.

(**d**)

B1: Applies $\pi \int_{-8}^{8} y^2 dx$ to the model. Must have π and correct limits, with y substituted in.

Alternatively attempts to square *y* first and then substitute in.

- M1: Attempts to expand y^2 this can be a poor attempt but must include at least a constant and x^6 terms as long a clear attempt at y^2 (Limits not required for this mark.)
- **dM1:** Attempts the integration, must first be rearranged to an integrable form then look for power increasing by at least 1 in at least two terms. (Limits not required for this mark.)
- **M1:** Applies correct limits to their integral following an attempt at y^2 with at least a constant and x^6 terms.

If there is no working shown, allow this method mark if the correct answer appears from a calculator as it implies correct limits have been applied the correct way round. (So M0dM0M1 is possible.)

A1: awrt 905 cso note it must come from a fully correct solution

- **Note:** For answers that appear from calculator B1M0dM0M1A0 is possible, the question specifies algebraic integration to be used so the integration needs to be seen to score the other marks.
- **(e)**
- **B1ft:** Compares their volume to 900 or compares their volume + 100 to 1 litre or 1000 and comments appropriately. Correct answer in (d) needs to conclude that it is suitable.