$y=3$	B1	2.2 a
$z=\frac{\text { their } y}{3}=\ldots\{1\}$	B1ft	1.1 b
Uses $z-3 y=k \Rightarrow k=-8$ and $x-3 z=k \Rightarrow x=k+3 z=$ their $k+3 \times$ their z leading to a value for x Alternatively uses $x-3 z=k=z-3 y$ with values for y and z to find a value for x.	M1	3.1 a
$x=-5$	A1	1.1 b
	(4)	

(4 marks)

Notes:

B1: $y=3$
B1ft: Follow through on the value of z which comes from their y divided by 3
M1: A complete method to find the value of x. Uses $z-3 y=k$ to find a value for k then finds a value for x using $x-3 z=k$ and their values for z and k. Condone a slip with the coefficients if the intention is clear but must have the correct letters.
Alternatively uses $x-3 z=k=z-3 y$ with values for y and z to find a value for x.
A1: $x=-5$
Correct answers only scores full marks.

