2(a)	$\begin{aligned} & z^{*}=-3-4 \mathrm{i} \\ & (z-(-3+4 \mathrm{i}))(z-(-3-4 \mathrm{i}))=z^{2}+p z+q \\ & \{\mathrm{f}(z)=\}\left(z^{2}+p z+q\right)(z+r) \end{aligned}$	M1	3.1a
	$\left(z^{2}+6 z+25\right)(z+7)$	A1	1.1b
	Multiplies out $\left(z^{2}+6 z+25\right)(z+7)=\ldots \alpha z^{2}+\beta z \ldots$	M1	1.1b
	$z^{3}+13 z^{2}+67 z+175$ or $a=13, b=67$	A1	1.1b
		(4)	
	Alternative 1 $z^{*}=-3-4 \mathrm{i}$ and uses product of roots $=-175$ to find the third root	M1	3.1a
	Third root $=-7$	A1	1.1b
	Either Uses sum roots $=-a$ to find a value for a or uses pair sum $=b$ to find a value for b Or $(z-(-3+4 \mathrm{i}))(z-(-3-4 \mathrm{i}))(z-\text { their third root })=\ldots$	M1	1.1b
	$a=13, b=67$	A1	1.1b
		(4)	
	Alternative 2 $\begin{aligned} & (-3+4 \mathrm{i})^{3}+a(-3+4 \mathrm{i})^{2}+b(-3+4 \mathrm{i})+175=0 \\ & \Rightarrow 117+44 \mathrm{i}+a(-7-24 \mathrm{i})+b(-3+4 \mathrm{i})+175=0 \end{aligned}$ Equates real and imaginary to form two linear simultaneous equations	M1	3.1a
	$\begin{aligned} & 117-7 a-3 b+175=0 \Rightarrow-7 a-3 b=-292 \\ & 44-24 a+4 b=0 \Rightarrow-24 a+4 b=-44 \end{aligned}$	A1	1.1b
	Solves simultaneously to find values for a or b	M1	1.1b
	$a=13, b=67$	A1	1.1b
		(4)	
(b)		B1 B1	$1.1 \mathrm{~b}$ $2.2 \mathrm{a}$
		(2)	

$-5+4 \mathrm{i},-5-4 \mathrm{i},-9$	B1ft
	(1)

Notes:

(a)

M1: Uses the given root and its complex conjugate to form a quadratic equation. Uses the quadratic equation to write $\mathrm{f}(z)$ in the form $\left(z^{2}+p z+q\right)(z+r)$ where p, q and r are real values
A1: Correct expression for $\mathrm{f}(z)=\left(z^{2}+6 z+25\right)(z+7)$
M1: Multiplies out and simplifies to find the z^{2} or z term.
A1: Correct values for a and b or cubic

Alternative 1

M1: Uses the complex conjugate and product of roots $=-175$ to find the third root.
A1: Correct third root
M1: A complete method to find the values of a or b. Either uses the sum and pairs sum or multiplies out three brackets $(z-(-3+4 \mathrm{i}))(z-(-3-4 \mathrm{i}))(z-$ their third root $)$ to find the z^{2} or z term.
A1: Correct values for a and b or cubic

Alternative 2

M1: Substitutes $-3+4 \mathrm{i}$ or $-3-4 \mathrm{i}$ into $\mathrm{f}(z)$, sets the real and imaginary parts $=0$ to form two simultaneous equations in a and b.
A1: Correct, unsimplified equations.
M1: Solves simultaneous equations to find values for a or b following an attempt at $\mathrm{f}(-3+4 \mathrm{i})=0$ or $\mathrm{f}(-3-4 \mathrm{i})=0$. Allow this mark for seeing a value for a or b following simultaneous equation, you do not need to check.
A1: Correct values for a and b.
(b)

B1: Correctly plotting $-3+4 \mathrm{i},-3-4 \mathrm{i}$
B1: Correctly plotting - 7
(c)

B1ft: $-5+4 \mathrm{i},-5-4 \mathrm{i}$ and subtracts 2 from their real root shown on their Argand diagram

