Question	Scheme	Marks	AOs
2(a)	$z^* = -3 - 4i$ (z - (-3 + 4i))(z - (-3 - 4i)) = z^2 + pz + q {f(z) =}(z^2 + pz + q)(z + r)	M1	3.1a
	$\left(z^2+6z+25\right)\left(z+7\right)$	A1	1.1b
	Multiplies out $(z^2 + 6z + 25)(z + 7) =\alpha z^2 + \beta z$	M1	1.1b
	$z^3 + 13z^2 + 67z + 175$ or $a = 13, b = 67$	A1	1.1b
		(4)	
	<u>Alternative 1</u>	M1	3.1a
	$z^* = -3 - 41$ and uses product of roots $= -1/5$ to find the third root Third root $= -7$	A1	1 1b
	Either Uses sum roots = $-a$ to find a value for a or uses pair sum = b to find a value for b Or (z-(-3+4i))(z-(-3-4i))(z-their third root) =	M1	1.1b
	a = 13, b = 67	A1	1.1b
		(4)	
	$\frac{\text{Alternative 2}}{(-3+4i)^3 + a(-3+4i)^2 + b(-3+4i) + 175 = 0}$ $\Rightarrow 117 + 44i + a(-7 - 24i) + b(-3+4i) + 175 = 0$ Equates real and imaginary to form two linear simultaneous equations	M1	3.1a
	$117 - 7a - 3b + 175 = 0 \Rightarrow -7a - 3b = -292$ $44 - 24a + 4b = 0 \Rightarrow -24a + 4b = -44$	A1	1.1b
	Solves simultaneously to find values for <i>a</i> or <i>b</i>	M1	1.1b
	a = 13, b = 67	A1	1.1b
		(4)	
(b)			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1	1.1b 2.2a
		(2)	

(c)	-5+4i, -5-4i, -9	B1ft	2.2a
		(1)	
		(7 r	narks)

Notes:

(a)

M1: Uses the given root and its complex conjugate to form a quadratic equation. Uses the quadratic equation to write f(z) in the form $(z^2 + pz + q)(z + r)$ where *p*, *q* and *r* are real values

A1: Correct expression for $f(z) = (z^2 + 6z + 25)(z + 7)$

M1: Multiplies out and simplifies to find the z^2 or z term.

A1: Correct values for a and b or cubic

Alternative 1

M1: Uses the complex conjugate and product of roots = -175 to find the third root.

A1: Correct third root

M1: A complete method to find the values of *a* or *b*. Either uses the sum and pairs sum or multiplies out three brackets (z - (-3 + 4i))(z - (-3 - 4i))(z - their third root) to find the z^2 or *z* term.

A1: Correct values for a and b or cubic

Alternative 2

M1: Substitutes -3+4i or -3-4i into f(z), sets the real and imaginary parts = 0 to form two

simultaneous equations in a and b.

A1: Correct, unsimplified equations.

M1: Solves simultaneous equations to find values for a or b following an attempt at f(-3+4i)=0 or

f(-3-4i) = 0. Allow this mark for seeing a value for *a* or *b* following simultaneous equation, you do not need to check.

A1: Correct values for *a* and *b*.

(b)

B1: Correctly plotting -3+4i, -3-4i

B1: Correctly plotting -7

(c)

B1ft: -5+4i, -5-4i and subtracts 2 from their real root shown on their Argand diagram