Question	Scheme	Marks	AOs
6(a)	$ \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = 3\{+0\} - 3 $	M1	1.1b
	= 0 therefore the lines are perpendicular .	A1	2.4
		(2)	
(b)	$\mathbf{r} \bullet \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \dots \{2\}$	M1	1.1b
	x+2y-3z=2 o.e.	A1	2.5
		(2)	
(c)	3+2(1)-3(1)=2 (therefore lies on the plane)	B1	1.1b
		(1)	
(d)	$\begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ or $\begin{pmatrix} p \\ q \\ r \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$ leading to $q = 3 - 2\mu$ $r = 2 + 3\mu$	M1	3.1a
	$(p-3)^{2} + (q-1)^{2} + (r-1)^{2} = (2\sqrt{5})^{2}$ $((2+\mu)-3)^{2} + ((3+2\mu)-1)^{2} + ((2-3\mu)-1)^{2} = (2\sqrt{5})^{2}$ $(-1+\mu)^{2} + (2+2\mu)^{2} + (1-3\mu)^{2} = 20$ or $(p-3)^{2} + (q-1)^{2} + (r-1)^{2} = (2\sqrt{5})^{2}$ $((2-\mu)-3)^{2} + ((3-2\mu)-1)^{2} + ((2+3\mu)-1)^{2} = (2\sqrt{5})^{2}$ $(-1-\mu)^{2} + (2-2\mu)^{2} + (1+3\mu)^{2} = 20$	M1	3.1a
	$14\mu^2 - 14 = 0$ o.e	A1	1.1b
	Solves their quadratic $\{\mu = -1 \text{ or } \mu = 1\}$	M1	1.1b
	Uses $\mu = -1$ Using $\mu = 1$	ddM1	1.1b

	$p = 2 + (-1) = \dots$ $p = 2 - (1) = \dots$		
	$q = 3 + 2(-1) = \dots$ or $q = 3 - 2(1) = \dots$		
	$r = 2 - 3(-1) = \dots$ $r = 2 + 3(1) = \dots$		
	(1, 1, 5) only	A1	3.2a
		(6)	
	Alternative		
	$ AX = \sqrt{(3-2)^2 + (1-3)^2 + (1-2)^2} = \sqrt{6}$	M1	3.1a
	Correctly uses Pythagoras to find the length of XB $ XB = \sqrt{\left(2\sqrt{5}\right)^2 - 6} = \sqrt{14}$	M1	3.1a
	Find the magnitude of the direction vector and compares to the length of <i>XB</i> to find a value for μ	M1	1.1b
	$\mu = -1 \text{ or } \mu = 1$	A1	1.1b
	Uses $\mu = -1$ Using $\mu = 1$ p = 2 + (-1) = $p = 2 - (1) =$	ddM1	1.1b
	$q = 3 + 2(-1) = \dots$ or $q = 3 - 2(1) = \dots$		
	$r = 2 - 3(-1) = \dots$ $r = 2 + 3(1) = \dots$		
	(1, 1, 5) only	A1	3.2a
		(6)	
	(11 marks		

Notes:

(a)

M1: Applies the dot product to the direction vectors. Minimum requirement is 3-3 A1: Shows that the dot product = 0 and concludes that the lines are **perpendicular**.

(b)

M1: Applies
$$\mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \dots \text{ or } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \dots$$

A1: Correct Cartesian equation x + 2y - 3z = 2 0.e.

Note: $\mathbf{i} + 2\mathbf{j} - 3\mathbf{k} = 2$ is M1A0

(c)

B1: See scheme, no conclusion required

(**d**)

M1: Uses the point of intersection to find the coordinates of B as functions of a parameter

M1: Uses the distance between the point A and the point B to form an equation for their parameter only.

A1: Correct simplified quadratic equation

M1: Solves their quadratic equation to find a value for μ

ddM1: Dependent on the first two method marks. Uses any one of their values for their parameter to find the coordinates of *B*, it need not be the correct one.

A1: Correct coordinates for B, condone as a vector, if seen (3, 5, -1) must be disregarded

Alternative

M1: Finds the length *AX*

- M1: Uses Pythagoras to find the length of *XB*
- NOTE the change in order of the M1 and A1

M1: Find the length of the direction vector and compares to find a value for μ

A1: A correct values for μ

ddM1: Dependent on the first two method marks. Uses any one of their values for their parameter to find the coordinates of *B*, it need not be the correct one.

A1: Correct coordinates for B, condone as a vector, if seen (3, 5, -1) must be disregarded