Question	Scheme	Marks	AOs
8 (a)	$(2r-1)^2 = 4r^2 - 4r + 1$	B1	1.1b
	$\sum_{r=1}^{n} (2r-1)^{2} = 4 \sum_{r=1}^{n} r^{2} - 4 \sum_{r=1}^{n} r + \sum_{r=1}^{n} 1$ $= 4 \frac{n}{6} (n+1) (2n+1) - 4 \frac{n}{2} (n+1) + n$	M1 A1	1.1b 1.1b
	$= \frac{n}{3} \Big[2(n+1)(2n+1) - 6(n+1) + 3 \Big]$ Or $= n \Big[\frac{2}{3}(n+1)(2n+1) - 2(n+1) + 1 \Big]$	dM1	1.1b
	$\left\{\frac{n}{3}(4n^2+6n+2-6n-6+3)\right\}$ = $\frac{n}{3}(4n^2-1)$ cso	A1	2.1
		(5)	
(b)	$\sum_{r=51}^{500} (2r-1)^2$	B1	3.1a
	$\sum_{r=51}^{500} (2r-1)^2 = \sum_{r=1}^{500} (2r-1)^2 - \sum_{r=1}^{50} (2r-1)^2$ $= \frac{500}{3} (4(500)^2 - 1) - \frac{50}{3} (4(50)^2 - 1)$ $\{ = 1666666500 - 166650 \}$	M1	1.1b
	166 499 850	A1	1.1b
		(3)	
	(8 m		narks)

Notes:

(a)

B1: Correct expanded expression.

M1: Substitutes at least one of the standard formulae into their expanded expression.

A1: Fully correct unsimplified expression.

dM1: Dependent on previous method. Attempts to factorises out n. Must have a n in every term. Condone a slip with one term as long as the intention is clear.

A1: Achieves the correct answer, with a correct intermediate line of working. cso

Note If uses $\sum 1 = 1$ scores B1 M1 A0 M0 A0

An attempt at proof by induction may score B1 only

(b)

B1: Correct summation formula for the sum of the squares of all positive odd three-digit integers including limits. This can be implied by later work.

M1: Uses the answer to part (a) and
$$\sum_{r=p}^{q} (2r-1)^2 = \sum_{r=1}^{q} (2r-1)^2 - \sum_{r=1}^{p-1} (2r-1)^2$$
 where *p*, *q* are numerical and

q > p, to find a value. There must be some indication of the sum that they are finding or the correct values for p and q.

States
$$\sum_{r=1}^{500} (2r-1)^2 - \sum_{r=1}^{50} (2r-1)^2$$
 implies B1

States
$$\frac{500}{3} (4(500)^2 - 1) - \frac{50}{3} (4(50)^2 - 1)$$
 this scores B1 (implied) and M1

A1: Correct value

Note $\sum_{r=51}^{500} (2r-1)^2 = 166499850$ or correct answer only scores B1 M0 A0, must be evidence of using the answer to (a)