8(a)

$(2 r-1)^{2}=4 r^{2}-4 r+1$	B1	1.1b
$\begin{aligned} \sum_{r=1}^{n}(2 r-1)^{2} & =4 \sum_{r=1}^{n} r^{2}-4 \sum_{r=1}^{n} r+\sum_{r=1}^{n} 1 \\ & =4 \frac{n}{6}(n+1)(2 n+1)-4 \frac{n}{2}(n+1)+n \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
$\begin{aligned} & =\frac{n}{3}[2(n+1)(2 n+1)-6(n+1)+3] \\ & \text { Or } \\ & =n\left[\frac{2}{3}(n+1)(2 n+1)-2(n+1)+1\right] \end{aligned}$	dM1	1.1b
$\begin{aligned} & \left\{\frac{n}{3}\left(4 n^{2}+6 n+2-6 n-6+3\right)\right\} \\ & =\frac{n}{3}\left(4 n^{2}-1\right) \text { cso } \end{aligned}$	A1	2.1
	(5)	
$\sum_{r=51}^{500}(2 r-1)^{2}$	B1	3.1a
$\begin{aligned} \sum_{r=51}^{500}(2 r-1)^{2} & =\sum_{r=1}^{500}(2 r-1)^{2}-\sum_{r=1}^{50}(2 r-1)^{2} \\ & =\frac{500}{3}\left(4(500)^{2}-1\right)-\frac{50}{3}\left(4(50)^{2}-1\right) \\ \{ & =166666500-166650\} \end{aligned}$	M1	1.1b
166499850	A1	1.1b
	(3)	

(8 marks)

Notes:

(a)

B1: Correct expanded expression.
M1: Substitutes at least one of the standard formulae into their expanded expression.
A1: Fully correct unsimplified expression.
dM1: Dependent on previous method. Attempts to factorises out n. Must have a n in every term. Condone a slip with one term as long as the intention is clear.
A1: Achieves the correct answer, with a correct intermediate line of working. cso
Note If uses $\sum 1=1$ scores B1 M1 A0 M0 A0
An attempt at proof by induction may score B1 only
(b)

B1: Correct summation formula for the sum of the squares of all positive odd three-digit integers including limits. This can be implied by later work.

M1: Uses the answer to part (a) and $\sum_{r=p}^{q}(2 r-1)^{2}=\sum_{r=1}^{q}(2 r-1)^{2}-\sum_{r=1}^{p-1}(2 r-1)^{2}$ where p, q are numerical and $q>p$, to find a value. There must be some indication of the sum that they are finding or the correct values for p and q.
States $\sum_{r=1}^{500}(2 r-1)^{2}-\sum_{r=1}^{50}(2 r-1)^{2}$ implies B1
States $\frac{500}{3}\left(4(500)^{2}-1\right)-\frac{50}{3}\left(4(50)^{2}-1\right)$ this scores B1 (implied) and M1
A1: Correct value
Note $\sum_{r=51}^{500}(2 r-1)^{2}=166499850$ or correct answer only scores B1 M0 A0, must be evidence of using the answer to (a)

