Question	Scheme	Marks	AOs
1(i)	$\alpha + \beta + \gamma = \frac{3}{2}, \ \alpha\beta + \alpha\gamma + \beta\gamma = \frac{5}{2}$	B1	3.1a
	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma) = \left(\frac{3}{2}\right)^{2} - 2\left(\frac{5}{2}\right) = \dots$	M1	1.1b
	$=-\frac{11}{4}=-2.75$ cso	A1	1.1b
		(3)	
(ii)	$\alpha\beta\gamma = -\frac{7}{2}$ or $x = \frac{3}{w}$ used in the equation	B1	2.2a
	$\frac{3}{\alpha} + \frac{3}{\beta} + \frac{3}{\gamma} = \frac{3(\alpha\beta + \alpha\gamma + \beta\gamma)}{\alpha\beta\gamma} = \frac{3\left(\frac{5}{2}\right)}{\left(-\frac{7}{2}\right)}$ or	M1	1.1b
	$2\left(\frac{3}{w}\right)^{3} - 3\left(\frac{3}{w}\right)^{2} + 5\left(\frac{3}{w}\right) + 7 = 0 \Longrightarrow 7w^{3} + 15w^{2} - 27w + 54\left\{=0\right\}$ $\implies -\frac{'15'}{'7'}$		
	$=-\frac{15}{7}$ cso	A1	1.1b
		(3)	
(iii)	$(5-\alpha)(5-\beta)(5-\gamma) = A \pm B(\alpha + \beta + \gamma) \pm C(\alpha\beta + \alpha\gamma + \beta\gamma) \pm (\alpha\beta\gamma)$ $= \left\{ 5^{3} - 5^{2}(\alpha + \beta + \gamma) + 5(\alpha\beta + \alpha\gamma + \beta\gamma) - \alpha\beta\gamma \right\}$ or $2(5-w)^{3} - 3(5-w)^{2} + 5(5-w) + 7 \left\{=0\right\}$ or $f(x) = A(x-\alpha)(x-\beta)(x-\gamma) \Longrightarrow A = 2$	M1	3.1a
	$(5-\alpha)(5-\beta)(5-\gamma) = 125 - 25\left(\frac{3}{2}\right) + 5\left(\frac{5}{2}\right) + \frac{7}{2}$ or $(5-\alpha)(5-\beta)(5-\gamma) = -\left(\frac{2 \times 125 - 3 \times 25 + 25 + 7}{-2}\right)$ Or $-2w^3 + 27w^2 - 125w + 207 \{=0\} \Rightarrow -\frac{'207'}{'-2'}$ or $f(5) = 2(5-\alpha)(5-\beta)(5-\gamma)$ $\Rightarrow (5-\alpha)(5-\beta)(5-\gamma) = \frac{f(5)}{2}$	M1	1.1b

	$=\frac{207}{2}=103.5$ cso	A1	1.1b		
		(3)			
(9 marks)					
Notes					
(i) B1: Correct sum and pair sum, they may be seen anywhere in the candidates working. M1: Uses a correct identity and substitutes in their sum and pair sum to find a value. A1: Correct value following B1, if uses $\alpha + \beta + \gamma = -\frac{3}{2}$ this can score B0 M1 A0 cso					
(ii) B1: Correct value for the product (may be seen anywhere in the candidates working) or for using $x = \frac{3}{w}$ in the given equation.					
M1: Uses a correct identity and substitutes in their pair sum and product to obtain a value or multiplies through by w^3 to identify at least the required terms and finds their new sum. A1: Correct value from correct pair sum and product cso (iii)					
M1: Correct strategy for obtaining the required value by expanding, must reach an expression for the form $A \pm B(\alpha + \beta + \gamma) \pm C(\alpha\beta + \alpha\gamma + \beta\gamma) \pm (\alpha\beta\gamma)$ may not be factorised for example.					
$A \pm B\alpha \pm B\beta \pm B\gamma \pm C\alpha\beta \pm C\alpha\gamma \pm C\beta\gamma \pm (\alpha\beta\gamma)$					
or Attempts the correct linear transformation of the given equation and expands. or Uses f $(x) = A(x-\alpha)(x-\beta)(x-\gamma)$ to find a value for A					
M1: Uses their sum, pair sum and product to obtain a value. Allow recovery from a sign slip as long as substituting into an expression of the form $A \pm B(\alpha + \beta + \gamma) \pm C(\alpha\beta + \alpha\gamma + \beta\gamma) \pm (\alpha\beta\gamma)$.					
This would be A0 even if the correct answer is achieved. or Simplifies to obtain at least the required terms to find a value for the new product. Ignore the other terms whether correct or not					

other terms whether correct or not.

Or Uses $\frac{f(5)}{2}$

A1: Correct value with no errors seen cso