Question	Scheme	Marks	AOs
2(a)	$\alpha = 210$	B1	1.1b
		(1)	
(b)	Require k ×their '210' divisible by 360	M1	1.1b
	<i>k</i> = 12	A1	1.1b
(0)		(2)	
(c)	$\{\mathbf{N} = \} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	B1	1.1b
		(1)	
(d)	$\mathbf{MA} = \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2\\ 4\\ 3 \end{pmatrix} = \begin{pmatrix} \sqrt{3} + 2\\ 1 - 2\sqrt{3}\\ 3 \end{pmatrix}$ $\mathbf{NMA} = \begin{pmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3} + 2\\ 1 - 2\sqrt{3}\\ 3 \end{pmatrix} = \begin{pmatrix} \sqrt{3} + 2\\ 2\sqrt{3} - 1\\ 3 \end{pmatrix} *$	M1	1.1a
	$\mathbf{NM} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\mathbf{NMA} = \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} \sqrt{3} + 2 \\ 2\sqrt{3} - 1 \\ 3 \end{pmatrix} *$		
		A1*	1.1b
	i.e. $B(2+\sqrt{3}, 2\sqrt{3}-1, 3)*$		
		(2)	

(e)	$AB^2 = OA^2 + OB^2 - 2OA.OB\cos AOB$			
	$\Rightarrow (4 + \sqrt{3})^{2} + (5 - 2\sqrt{3})^{2} = 29 + 29 - 2\sqrt{29} \cdot \sqrt{29} \cos AOB$			
	or			
	(-2) $(2+\sqrt{3})$	M1	3.1a	
	$OA.OB = \begin{pmatrix} -2\\4\\3 \end{pmatrix} \bullet \begin{pmatrix} 2+\sqrt{3}\\2\sqrt{3}-1\\3 \end{pmatrix} = 1 + 6\sqrt{3} = \sqrt{29}\sqrt{29}\cos AOB$			
	$AOB = 66.9^{\circ} *$	A1*	1.1b	
		(2)		
(f)	Area $AOB = \frac{1}{2}\sqrt{29}\sqrt{29}\sin 66.9^\circ$			
	You may see this outside spec from candidates studying 8FM0 21	ĺ		
		ļ		
	$\begin{vmatrix} 1 \\ -2 \\ 4 \\ 3 \end{vmatrix}$	ĺ		
	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 4 & 3 \\ 2 + \sqrt{3} & 2\sqrt{3} - 1 & 3 \end{vmatrix}$			
	$= \frac{1}{2} \left[\left[12 - 3\left(2\sqrt{3} - 1\right) \right] \mathbf{i} - \left[-6 - 3\left(2 + \sqrt{3}\right) \right] \mathbf{j} + \left[-2\left(2\sqrt{3} - 1\right) - 4\left(2 + \sqrt{3}\right) \right] \mathbf{k} \right] \right]$	M1	1.1b	
	$=\frac{1}{2}\left \left(15-6\sqrt{3}\right)\mathbf{i}+\left(12+3\sqrt{3}\right)\mathbf{j}+\left(-6-8\sqrt{3}\right)\mathbf{k}\right $			
	$=\frac{1}{2}\sqrt{\left(15-6\sqrt{3}\right)^{2}+\left(12+3\sqrt{3}\right)^{2}+\left(-6-8\sqrt{3}\right)^{2}}$			
	12.2 000	A 1	1 1h	
	= 13.3 cao	A1 (2)	1.1b	
	<u>i</u>		marks)	
Notes				
(a)				
. ,	ect value, check within the question. If more than one value is stated the	correct v	alue	
must clearly be selected.				
(b)		1		
M1: Uses their answer from part (a) to determine a value for k so that k×their 210 is divisible by 7π				
360. If their answer to part (a) is in radians $k \times \text{their } \frac{7\pi}{6}$ is divisible by 2π .				
A1: Correct value must be using an angle of 210. There may be no working but allow M1 A1 for				

A1: Correct value must be using an angle of 210. In k = 12 following an answer of 210 or $\frac{7\pi}{6}$ in part (a)

Note: an angle of 30, 150, 330 also gives k = 12 but is M1A0

(c)

B1: Correct matrix

(d)

M1: Complete method to find the coordinates of B. Look for at least two correct terms for each multiplication, follow through when multiplying by N.

Alternatively finds NM (not MN), look for 4 correct non zero terms if no method is shown and then multiplies to find the coordinates of *B*.

A1*: Correct coordinates (condone vector) Must have been working with exact values throughout. If working in decimals M1 A0

It is insufficient to just write
$$\mathbf{NM}\begin{pmatrix} -2\\4\\3 \end{pmatrix} = \begin{pmatrix} \sqrt{3}+2\\2\sqrt{3}-1\\3 \end{pmatrix}$$

 $| = | 2\sqrt{3} - 1 |$ there must be some evidence of matrix

multiplication seen.

(e)

M1: Identifies and applies an appropriate strategy to find the required angle e.g. cosine rule or scalar product. Note: $AB^2 = 56 - 12\sqrt{3}$ and $AB = 3\sqrt{6} - \sqrt{2} = 5.93...$ A1*: Correct value from correct equation

(f)

M1: Uses the given angle with $\frac{1}{2}ab\sin C$ with appropriate *a*, *b* and *C*

Outside spec: uses the cross product $\frac{1}{2} \left| \overrightarrow{OA} \times \overrightarrow{OB} \right|$

A1: Correct area to 3 significant figures