Question	Scheme	Marks	AOs
7(i)	$n = 1, lhs = \frac{1}{1(2)} = \frac{1}{2} rhs = \frac{1}{1+1} = \frac{1}{2}$	B1	2.2a
	So the result is the for $h = 1$		
	Assume true for $n = k$ so $\sum_{r=1}^{k} \frac{1}{r(r+1)} = \frac{k}{k+1}$	M1	2.4
	$\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)} = \frac{k(k+2)}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)}$	M1	2.1
	$=\frac{k(k+2)+1}{(k+1)(k+2)} = \frac{k^2+2k+1}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{(k+1)(k+2)} = \frac{k+1}{(k+1)(k+2)} = \frac{k+1}{(k+1)(k+2)}$ cso	A1	1.1b
	If true for $n = k$ then it has been shown true for n = k + 1 and as it is true for $n = 1$, the statement is true for all positive integers n .	A1	2.4
		(5)	
7(ii)	Way 1: $f(k + 1)$		
	$n=1$, $3^{2n+4}-2^{2n}=3^6-2^2=729-4=725$	B1	2.2a
	So the result is true for $n = 1$ as 725 is divisible by 5		
	Assume true for $n = k$ so is $3^{2k+4} - 2^{2k}$ divisible by 5	M1	2.4
	$f(k+1) = 3^{2(k+1)+4} - 2^{2(k+1)} = 3^{2k+6} - 2^{2k+2}$		
	Look for		
	$A \times 3^{2k+4} - A \times 2^{2k} + B \times 2^{2k}$ or $A \times 3^{2k+4} - A \times 2^{2k} + B \times 3^{2k+4}$	M1	2.1
	$9 \times 3^{2k+4} - 9 \times 2^{2k} + 5 \times 2^{2k}$ or $4 \times 3^{2k+4} - 4 \times 2^{2k} + 5 \times 3^{2k+4}$		
	=9f(k)+5×2 ^{2k} or =4f(k)+5×3 ^{2k+4}	A1	1.1b
	If true for $n = k$ then it has been shown true for n = k + 1 and as it is true for $n = 1$, the statement is true for all positive integers n .	A1	2.4
		(5)	
	Way 2: $f(k + 1)$ - $f(k)$		
	$n = 1, 3^{2n+4} - 2^{2n} = 3^6 - 2^2 = 729 - 4 = 725$	B1	2.2a
	So the result is true for $n = 1$ as 725 is divisible by 5		
	Assume true for $n = k$ so $3^{2k+4} - 2^{2k}$ is divisible by 5	M 1	2.4
	$f(k+1) - f(k) = 3^{2(k+1)+4} - 2^{2(k+1)} - 3^{2k+4} + 2^{2k}$		
	Look for 2^{2k+4} 2^{2k} 2^{2k} 2^{2k} 2^{2k+4} 2^{2k} 2^{2k+4}	M1	2.1
	$A \times 3^{2k+4} - A \times 2^{2k} + B \times 2^{2k} \text{ or } A \times 3^{2k+4} - A \times 2^{2k} + B \times 3^{2k+4}$ = 8×3 ^{2k+4} - 8×2 ^{2k} + 5×2 ^{2k} or 3×3 ^{2k+4} - 3×2 ^{2k} + 5×3 ^{2k+4}		
	$f(k+1) = 9f(k) + 5 \times 2^{2k}$	A1	1.1b

	or f $(k+1) = 4f(k) + 5 \times 3^{2k+4}$				
	If true for $n = k$ then it has been shown true for n = k + 1 and as it is true for $n = 1$, the statement is true for all positive integers n .	A1	2.4		
		(5)			
	Way 3: $\mathbf{f}(k) = 5M$				
	$n=1$, $3^{2n+4}-2^{2n}=3^6-2^2=729-4=725$	B1	2.2a		
	So the result is true for $n = 1$ as 725 is divisible by 5				
	Assume true for $n = k$ so $3^{2^{k+4}} - 2^{2^k} = 5M$ is divisible by 5	M1	2.4		
	$f(k+1) = 3^{2(k+1)+4} - 2^{2(k+1)} \left(= 3^{2k+6} - 2^{2k+2}\right)$				
	$f(k+1) = 3^{2} \times 3^{2k+4} - 2^{2} \times 2^{2k} = 3^{2} \times (5M+2^{2k}) - 2^{2} \times 2^{2k}$	M1	2.1		
	OR f (k+1) = 3 ² × 3 ^{2k+4} - 2 ² × 2 ^{2k} = 3 ² × 3 ^{2k+4} - 2 ² × (3 ^{2k+4} - 5M)				
	$f(k+1) = 45M + 5' 2^{2k} OR f(k+1) = 5' 3^{2k+4} + 20M$ o.e.	A1	1.1b		
	If true for $n = k$ then it has been shown true for n = k + 1 and as it is true for $n = 1$, the statement is true for all positive integers n .	A1	2.4		
		(5)			
	Way 4: $f(k + 1)$ - $m f(k)$				
	$n=1$, $3^{2n+4}-2^{2n}=3^6-2^2=729-4=725$	B1	2.2a		
	So the result is true for $n = 1$ as 725 is divisible by 5				
	Assume true for $n = k$ so $3^{2k+4} - 2^{2k}$ is divisible by 5	M1	2.4		
	$f(k+1)-mf(k) = 3^{2k+6} - 2^{2k+2} - m(3^{2k+4} - 2^{2k})$ $3^{2'} 3^{2k+4} - 2^{2'} 2^{2k} - m' 3^{2k+4} + m' 2^{2k}$	M1	2.1		
	$(9-m)' (3^{2k+4} - 2^{2k}) + 5' 2^{2k}$				
	$f(k+1) = (9 - m)' f(k) + 5' 2^{2k} + mf(k)$				
	$f(k+1) = (9 - m)' (3^{2k+4} - 2^{2k}) + 5' 2^{2k} + mf(k)$	A1	1.1b		
	Note if $m = 4$ leads to 5' (3^{2k+4})				
	If true for $n = k$ then it has been shown true for $n = k + 1$ and as it is true for $n = 1$ the statement is true for all	Δ 1	24		
	n - n + 1 and as it is true for $n - 1$, the statement is true for an positive integers n .	AI	۷.4		
	F	(5)			
	(10 marks				
Notes					
(i) Must be using induction to score any marks					

B1: Shows that the result holds for n = 1. Minimum LHS = $\frac{1}{1(2)}$ RHS = $\frac{1}{1+1}$

M1: Makes a statement that assumes the result is true for some value of n, say k

M1: Attempts to add the next term and makes progress by attempting a common denominator. A1: Achieves a correct expression in terms of k + 1, with no errors seen cso. Alternatively finds

 $\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \frac{k+1}{k+2}$ and reaches the same expression using induction.

A1: Correct conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of **all four bold** points either at the end of their solution or as a narrative in their solution. **Not dependent on B1 as long as attempted**

(ii)

Way 1: f(k + 1)

B1: Shows that the result holds for n = 1

M1: Makes a statement that assumes the result is true for some value of n, say k

M1: Attempts f (k + 1) and attempts to express in terms of f (k)

A1: Achieves a correct expression in terms of f(k)

A1: Correct conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of **all four bold** points either at the end of their solution or as a narrative in their solution. **Not dependent on B1 as long as attempted**

Way 2: f(k + 1) - f(k)

B1: Shows that the result holds for n = 1

M1: Makes a statement that assumes the result is true for some value of n, say k

M1: Attempts f(k + 1) - f(k) and attempts to express in terms of f(k)

A1: Achieves a correct expression for f(k + 1) in terms of f(k)

A1: Correct conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of **all four bold** points either at the end of their solution or as a narrative in their solution. **Not dependent on B1 as long as attempted**

Way 3: f(k) = 5M

B1: Shows that the result holds for n = 1

M1: Makes a statement that assumes the result is true for some value of n, say k

M1: Attempts f(k+1) and writes in terms of 5*M*.

A1: Achieves a correct expression for f (k + 1) in terms of M and 2^{2k} or M and 3^{2k+4}

A1: Correct conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of **all four bold** points either at the end of their solution or as a narrative in their solution. **Not dependent on B1 as long as attempted**

Way 4: f(k+1)-mf(k)

B1: Shows that the result holds for n = 1

M1: Makes a statement that assumes the result is true for some value of n, say k

M1: Attempts f(k + 1) - m f(k) and attempts to express in terms of f(k)

A1: Achieves a correct expression for f(k + 1) in terms of f(k)

A1: Correct conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of **all four bold** points either at the end of their solution or as a narrative in their solution. **Not dependent on B1 as long as attempted**

Note conclusion may be in terms of f(1), f(k), f(k+1)