Question	Scheme	Marks	AOs
8(a)	$(0.4, 4) \Longrightarrow 0.4 = k \times 4^2 + \sqrt{4} \Longrightarrow k = \dots$	M1	3.3
	k = -0.1	A1	1.1b
		(2)	
(b)	Cylinder volume = $\pi \times 0.4^2 \times 0.5 = 0.08 \ \pi = \frac{2}{25} \pi$	B1	3.4
	Volume generated by curve = $\pi \int x^2 dy$		2 11
	$\pi \int \left(\sqrt{y} + ky^2\right)^2 \left\{ dy \right\} = \pi \int \left(\sqrt{y} - 0.1y^2\right)^2 \left\{ dy \right\}$	MI	3.10
	$= \left\{\pi\right\} \int \left(y + 2ky^{\frac{5}{2}} + k^2y^4\right) \left\{dy\right\}$	A1ft	1.1b
	$= \{\pi\} \int \left(y - 0.2y^{\frac{5}{2}} + 0.01y^{4} \right) \{dy\}$		
	$= \left\{\pi\right\} \int_{0} \left(y - 0.2y^{\frac{5}{2}} + 0.01y^{4}\right) \left\{dy\right\}$		
	$\Rightarrow \left\{\pi\right\} \left[Ay^2 + By^{\frac{7}{2}} + Cy^5\right]$	MI	3.4
	at least one of their terms with the correct power		
	$= \left\{\pi\right\} \left[\frac{y^2}{2} + \frac{4k}{7}y^{\frac{7}{2}} + \frac{k^2}{5}y^5\right]$	A1ft	1.1b
	$= \left\{\pi\right\} \left[\frac{y^2}{2} - \frac{2}{35}y^{\frac{7}{2}} + \frac{1}{500}y^5\right]$		
	$V = \pi \left(8 - \frac{256}{35} + \frac{256}{125} \right) - (0) + \frac{2}{25}\pi$ $V = \frac{2392}{875}\pi + \frac{2}{25}\pi$	M1	3.4
	$V = \frac{2462\pi}{875} \text{ cm}^3$	A1	2.2b
	015	(7)	
(c)	E.g.		
	The equation of the curve may not be a suitable modelThe sides of the ornament will not be perfectly smooth	B1	3.5b
	• There may be flaws/bubbles within the glass		
	• The corner (ABC) may not be a perfect right angle	(1)	

(d)	Makes an appropriate comment that is consistent with their value for			
	the volume and 9 cm^3 .			
	Some evidence of making a comparison and draws a conclusion			
	E.g. a good estimate as 8.84 cm^3 is only 0.16 cm^3 less than 9 cm^3	B1ft	3.5a	
	• A volume between 8.5 and 9.5 is a good model			
	• A volume between 8 and 10 can be either a good or bad			
	model			
	• A volume less than 8 or more than 10 is a bad model, over			
	estimate or underestimate			
	• model volume is less, not enough glass would be ordered so			
	it is a bad model, following a correct answer to (b)			
		(1)		
(11 marks)				
Notes				

(a)

M1: Substitutes (0.4, 4) into the equation modelling the curve in an attempt to find the value of k A1: Infers from the data in the model, the value of k

(b)

B1: Uses the information given in the model to establish the correct volume of the cylinder

M1: Uses the model and applies $\pi \int x^2 \{dy\}$, dy not required and π may appear later in their

solution. If they find an expression for x^2 first and then substitutes into the formula score M1 even if an incorrect expansion.

A1ft: Correct expression for the volume generated by the curve with the bracket expanded (follow through their *k* value), dy not required and π may appear later in their solution. Indices need to be processed for this mark, may be seen later in the solution.

M1: Attempts to integrate with at least one power raised by 1

A1ft: Correct integration (follow through on their expression for x^2 as long as there are 3 terms). Need not be simplified.

M1: Uses the correct limits and finds the sum of the 2 volumes. Must come from an attempt at $\int_{-4}^{4} 2(12) dx = 1$

 $\pi \int_{0}^{\infty} x^2 \{dy\}$ and an attempt at the volume of the cylinder, condone incorrect formula used as long

as it is 3 dimensional not an area.

A1:
$$\frac{2462\pi}{875}$$

Use of calculator scores a maximum of B1M1A0M0A0M1A0 volume = $\pi 2.7337...$ (c)

B1: States an acceptable limitation of the model, which is the curve but accept flaws/bubbles in the glass. Measurements may not be accurate, or anything related to thickness is B0 (d)

B1ft: Compares the actual volume to their answer to part (b) and makes an assessment of the model with a reason. If using a percentage error then they must use 9 as the true volume.