With respect to the **right-hand rule**, a rotation through θ° anticlockwise about the *z*-axis is represented by the matrix

$\cos\theta$	$-\sin\theta$	0)
$\sin \theta$	$\cos\theta$	0
0	0	1)

Given that the matrix **M**, where

$$\mathbf{M} = \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

represents a rotation through α° anticlockwise about the *z*-axis with respect to the **right-hand rule**,

(a) determine the value of α .

(b) Hence determine the smallest possible positive integer value of k for which $\mathbf{M}^{k} = \mathbf{I}$

The 3×3 matrix **N** represents a reflection in the plane with equation y = 0

(c) Write down the matrix **N**.

The point *A* has coordinates (-2, 4, 3)

The point B is the image of the point A under the transformation represented by matrix \mathbf{M} followed by the transformation represented by matrix \mathbf{N} .

(d) Show that the coordinates of *B* are $(2 + \sqrt{3}, 2\sqrt{3} - 1, 3)$

Given that *O* is the origin,

(e) show that, to 3 significant figures, the size of angle AOB is 66.9°

(2)

(2)

(1)

(2)

(1)

(f) Hence determine the area of triangle *AOB*, giving your answer to 3 significant figures.

(2)

2.