$$\mathbf{A} = \begin{pmatrix} -1 & -2 & -7 \\ 3 & k & 2 \\ 1 & 1 & 4 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 4k - 2 & 1 & 7k - 4 \\ -10 & 3 & -19 \\ 3 - k & -1 & 6 - k \end{pmatrix}$$
where *k* is a constant.

(a) Determine the value of the constant c for which

$$\mathbf{AB} = (3k + c)\mathbf{I}$$

(b) Hence determine the value of
$$k$$
 for which \mathbf{A}^{-1} does not exist.

Given that A^{-1} does exist,

Given that
$$A^{-1}$$
 does exist,
(c) write down A^{-1} in terms of k .

in terms of
$$k$$
.

(d) Use the answer to part (c) to solve the simultaneous equations
$$-x - 2y - 7z = 10$$
$$3x + ky + 2z = 3$$

$$-x - 2y - 7z = 10$$
$$3x + ky + 2z = 3$$

x + v + 4z = 1

$$x + y + 4z =$$

giving the values of x, y and z in simplest form in terms of k.

(3)

(1)

(2)

(2)