Question	Scheme	Marks	AOs
2(a)	$r(r-1)^2 = r^3 - 2r^2 + r$	B1	1.1b
	$\sum_{r=1}^{n} r(r-1)^2 = \frac{n^2}{4}(n+1)^2 - 2 \times \frac{n}{6}(n+1)(2n+1) + \frac{n}{2}(n+1)$	M1 A1	2.1 1.1b
	$=\frac{n}{12}(n+1)[3n(n+1)-4(2n+1)+6]$	dM1	1.1b
	$= \frac{n}{12}(n+1)[3n^2 - 5n + 2]$ $= \frac{n}{12}(n+1)(3n-2)(n-1)$	A1	1.1b
		(5)	
(b)	$\frac{n}{12}(n+1)(n-1)(3n-2) = 5 \times \frac{n}{2}(n+1)$	M1	1.1b
	$3n^{3} - 5n^{2} - 28n = 0$ or $3n^{2} - 5n - 28 = 0$	A1	1.1b
	$(3n+7)(n-4) = 0 \Rightarrow n = \dots$	M1	1.1b
	n = 4 (only)	A1	2.3
		(4)	
(9 marks)			

Notes

(a)

Do not allow <u>proof by induction</u> (but the **B1** could score for $r(r-1)^2 = r^3 - 2r^2 + r$ if seen in an attempt)

B1: Correct expansion.

M1: Substitutes at least one of the standard formulae into their expanded expression.

A1: Fully correct expression (simplified or unsimplified).

dM1: Attempts to factorise $\frac{1}{12}n(n+1)$ having used at least one standard formula correctly. Dependent on the first M mark and dependent on there being n(n+1) in all terms.

A1: Obtains the printed result with no errors seen (brackets may be written in any order).

(b)

M1: Uses their result from part (a) and sets equal to $5 \times \frac{n}{2}(n+1)$ and attempts to expand and collect terms.

A1: Correct cubic or quadratic.

M1: Attempts to solve their 3TQ or cubic equation.

A1: Identifies the correct value of *n* with no other values offered.