Question	Scheme	Marks	AOs
3 (a) (i)	$ x + iy - 3 = 3\sqrt{2}$		
	$ x-3+iy =3\sqrt{2}$	M1	1.1b
	$(x-3)^2 + y^2 = 18$	AI	1.10
(ii)	x + iy - 2 - i = x + iy + 4 + i		
	x-2 + i(y-1) = x+4 + i(y+1)	M1	1.1b
	$(x-2)^{2} + (y-1)^{2} = (x+4)^{2} + (y+1)^{2}$		
	$x^{2} - 4x + 4 + y^{2} - 2y + 1 = x^{2} + 8x + 16 + y^{2} + 2y + 1$	M1	1 11
	$\Rightarrow y = -3x - 3$ oe	A1	1.1b 1.1b
		(5)	
(ii)	z - (2 + i) = z - (-4 - i)		
ALTI	Attempts to find the gradient of line through points (2, 1) and $(4 - 1) = (4 - 1)^{1}$	M1	1.1b
	$(-4, -1)$ $(m = \frac{1}{3})$		
	Complete attempt to find the equation of perpendicular bisector		
	e.g., $y - 0 = -\frac{1}{''m''}$ (x1)	M1 A1	1.1b 1.1b
	y = -3x - 3 oe		
(b)	$(x-3)^2 + y^2 = 18, y = -3x - 3$		
	$(x-3)^{2} + (-3x-3)^{2} = 18$ $\Rightarrow 10x^{2} + 12x = 0$		
	OR	M1	1.1b
	$\left[\left(\frac{-3-y}{2}\right)-3\right]^2 + y^2 = 18$		
	$\Rightarrow 10y^2 + 24y - 18 = 0$		
	$x = 0 \text{ or } x = -\frac{6}{5}$		
	$y = -3 \text{ or } y = \frac{3}{5}$	A1ft	1.1b
	J		
	$z = -3i$, $z = -\frac{6}{5} + \frac{3}{5}i$	A1	1.1b
		(3)	

Notes

(a) (i)

M1: Substitutes for z = x + iy and proceeds to collect real and imaginary parts before proceeding to equation in terms of x and y only.

A1: $(x - 3)^2 + y^2 = 18$ oe

(a) (ii)

M1: Substitutes for z = x + iy and proceeds to collect real and imaginary parts before proceeding to an equation in terms of x and y only.

M1: Expands brackets and simplifies terms to achieve a linear equation. A1: y = -3x - 3 oe

Alternative:

M1: Identifies coordinates $(\pm 2, \pm 1)$ and $(\pm 4, \pm 1)$ and proceeds to find gradient through their points

M1: Finds gradient of perpendicular bisector using $-\frac{1}{''m''}$ and their midpoint A1: y = -3x - 3 oe

(b)

M1: Substitutes for their y in their x equation or vice versa to produce a quadratic equation. A1: Solves the quadratic to find either both x or both y values.

A1: Finds the correct *z* values.

$$z = -3i$$
, $z = -\frac{6}{5} + \frac{3}{5}i$ cac

(c)

M1: Sketches a circle which passes through all 4 quadrants and a line with a negative gradient that intersects the circle at two distinct points.

A1: Shades the region beneath their line and within the circle.