Question	Scheme	Marks	AOs
6	$\mathbf{f}(k+1) - \mathbf{f}(k)$		
	When $n = 1$, $6^{2n-1} + 8^{n+1} = 6 + 64 = 70$	D 1	2.20
	so the statement is true for $n = 1$	DI	2.2a
	Assume true for $n = k$ so $6^{2k-1} + 8^{k+1}$ is divisible by 7	M1	2.4
	$f(k+1) - f(k) = 6^{2(k+1)-1} + 8^{k+1+1} - 6^{2k-1} - 8^{k+1}$	M 1	2.1
	$= 36 \times 6^{2k-1} + 8 \times 8^{k+1} - 6^{2k-1} - 8^{k+1}$		
	$= 7f(k) + 28 \times 6^{2k-1} \text{ or e.g.} = 35f(k) - 28 \times 8^{k+1}$	A1	1.1b
	$f(k+1) = 8f(k) + 28 \times 6^{2k-1}$		
	or e.g. $f(k + 1) = 36f(k) - 28 \times 8^{k+1}$	A1	1.1b
	If true for $n = k$ then true for $n = k + 1$, true for $n = 1$ so true for all (positive integers) n (Allow "for all values")	A1	2.4
		(6)	
	f(k + 1)		
ALT 1	When $n = 1$, $6^{2n-1} + 8^{n+1} = 6 + 64 = 70$	D 1	2.20
	so the statement is true for $n = 1$	DI	2.2a
	Assume true for $n = k$ so $6^{2k-1} + 8^{k+1}$ is divisible by 7	M1	2.4
	$f(k+1) = 6^{(2k+1)-1} + 8^{k+1+1}$	M 1	2.1
	$f(k+1) = 36 \times 6^{2k-1} + 8 \times 8^{k+1}$	A 1	1 11
	$= 28 \times 6^{2k-1} + 8 \times 6^{2k-1} + 8 \times 8^{k+1}$		1.1b
	$f(k+1) = 8f(k) + 28 \times 6^{2k-1}$	AI	1.10
	If true for $n = k$ then true for $n = k + 1$, true for $n = 1$ so true for	Δ 1	24
	<u>all (positive integers) n</u> (Allow "for all values")	Π	2.4
		(6)	
	$\frac{f(k+1) - mf(k)}{2}$		
ALT 2	When $n = 1$, $6^{2n-1} + 8^{n+1} = 6 + 64 = 70$	B1	2.2a
	so the statement is true for $n = 1$	2.64	
	Assume true for $n = k$ so $6^{2k-1} + 8^{k+1}$ is divisible by /	MI	2.4
	$f(k+1) - mf(k) = 6^{2k+1} + 8^{k+2} - m(6^{2k+1} + 8^{k+1})$	MI	2.1
	$= (8-m)8^{k+1} + 6^{2k+1} - m \times 6^{2k-1}$ = (8-m)(9^{k+1} + 6^{2k-1}) + 28 \times 6^{2k-1}	A1	1.1b
	$f(k) = (8 - m)(8^{k+1} + 6^{2k-1}) + 28 \times 6^{2k-1} + mf(k)$	A1	1.1b
	If true for $n = k$ then true for $n = k + 1$, true for $n = 1$ so true for	A1	2.4
	<u>all (positive integers) n</u> (Allow "for all values")		
	f(1) 7M	(0)	
ALI 3	I(k) = /M		
	when $n = 1$, $6^{-10} - + 8^{-11} = 6 + 64 = 70$	B1	2.2a
	Assume true for $n - k \le 6^{2k-1} \pm 9^{k+1} - 7M$	M1	24
	$f(k+1) - 6^{2(k+1)-1} \pm 9^{k+1+1}$	M1	2.4
	$f(k+1) = 8 \times 8^{k+1} + 6^{2k+1} - 8(7M - 6^{2k-1}) + 6^{2k+1}$	Δ1	1 1h
	$f(k+1) = 56M + 28 \times 6^{2k-1}$	A1	1.1b

6 marks)					
		(6)			
If	<u>Strue for $n = k$ then true for $n = k + 1$, true for $n = 1$ so true for all (positive integers) n (Allow "for all values")</u>	A1	2.4		

notes

B1: Shows that f(1) = 70

M1: Makes a statement that assumes the result is true for some value of n (Assume (true for))

n = k is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for n = k then ... etc.)

M1: Attempts f(k + 1) - f(k) or equivalent work.

A1: Achieves a correct expression for f(k + 1) - f(k) in terms of f(k).

A1: Reaches a correct expression for f(k + 1) in terms of f(k).

A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.

ALT 1

B1: Shows that f(1) = 70

M1: Makes a statement that assumes the result is true for some value of n (Assume (true for) n = k is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for n = k then ... etc.)

M1: Attempts f(k + 1)

A1: Correctly obtains 8f(k) or $28 \times 6^{2k-1}$

A1: Reaches a correct expression for f(k + 1) in terms of f(k).

A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of **all** four underlined points **either** at the end of their solution or as a narrative in their solution.

ALT 2

B1: Shows that f(1) = 70

M1: Makes a statement that assumes the result is true for some value of n (Assume (true for) n = k is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for n = k then ... etc.)

M1: Attempts f(k + 1) - mf(k)

A1: Achieves a correct expression for f(k + 1) - mf(k) in terms of f(k).

A1: Reaches a correct expression for f(k + 1) in terms of f(k).

A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.

ALT 3

B1: Shows that f(1) = 70

M1: Makes a statement that assumes the result is true for some value of n (Assume (true for) n = k is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for n = k then ... etc.)

M1: Attempts f(k + 1)

A1: Correctly obtains 56*M* or $28 \times 6^{2k-1}$

A1: Reaches a correct expression for f(k + 1) in terms of *M* and 6^{2k-1}

A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of **all** four underlined points **either** at the end of their solution **or** as a narrative in their solution.