Question	Scheme	Marks	AOs
5(a)	$f(-3) = (-3)^3 + 3 \times (-3)^2 - 4 \times (-3) - 12$	M1	1.1b
	$f(-3) = 0 \Rightarrow (x+3)$ is a factor \Rightarrow Hence $f(x)$ is divisible by $(x+3)$.	A1	2.4
		(2)	
(b)	$x^{3} + 3x^{2} - 4x - 12 = (x+3)(x^{2} - 4)$	M1	1.1b
	=(x+3)(x+2)(x-2)	dM1	1.1b
		A1	1.1b
		(3)	
(c)	$\frac{x^3 + 3x^2 - 4x - 12}{x^3 + 5x^2 + 6x} = \frac{\dots}{x(x^2 + 5x + 6)}$	M1	3.1a
	$=\frac{(x+3)(x+2)(x-2)}{x(x+3)(x+2)}$	dM1	1.1b
	$=\frac{(x-2)}{x}=1-\frac{2}{x}$	A1	2.1
		(3)	
(8 marks)			

Notes:

(a)

M1: Attempts f(-3)

A1: Achieves f(-3) = 0 and explains that (x+3) is a factor and hence f(x) is divisible by (x+3).

(b)

M1: Attempts to divide by (x+3) to get the quadratic factor.

By division look for the first two terms. ie $x^2 + 0x$ $x+3)\frac{x^2 \pm 0x}{x^3 + 3x^2 - 4x - 12}$ $x^3 + 3x^2$

By inspection look for the first and last term $x^3 + 3x^2 - 4x - 12 = (x+3)(x^2 + ...x \pm 4)$

dM1: For an attempt at factorising their $(x^2 - 4)$. (Need to check first and last terms)

A1: f(x) = (x+3)(x+2)(x-2)

(c)

M1: Takes a common factor of x out of the denominator and writes the numerator in factors.

Alternatively rewrites to
$$x^3 + 3x^2 - 4x - 12 = A(x^3 + 5x^2 + 6x) + B(x^2 + 5x + 6)$$

dM1: Further factorises the denominator and cancels

Alternatively compares terms or otherwise to find either A or B

A1: Shows that
$$\frac{x^3 + 3x^2 - 4x - 12}{x^3 + 5x^2 + 6x} = 1 - \frac{2}{x}$$
 with no errors or omissions

In the alternative there must be a reference to

