Question	Scheme	Marks	AOs
6(i)	Tries at least one value in the interval Eg $4^2-4-1=11$	M1	1.1b
	States that when $n = 8$ it is FALSE and provides evidence $8^2 - 8 - 1 = 55 = (11 \times 5)$ Hence NOT PRIME	A1	2.4
		(2)	
(ii)	Knows that an odd number is of the form $2n+1$	B1	3.1a
	Attempts to simplify $(2n+1)^3 - (2n+1)^2$	M1	2.1
	and factorise $8n^3 + 8n^2 + 2n = 2(4n^3 + 4n^2 + 1n) =$	dM1	1.1b
	with statement $2 \times$ is always even	A1	2.4
		(4)	
Alt (ii)	Let the odd number be 'n' and attempts $n^3 - n^2$	B1	3.1a
	Attempts to factorise $n^3 - n^2 = n^2 (n-1)$	M1	2.1
	States that n^2 is odd (odd × odd) and $(n-1)$ is even (odd -1)	dM1	1.1b
	States that the product is even (odd×even)	A1	2.4
	(6 marks		

Notes: See above

(i)

M1: Attempts any $n^2 - n - 1$ for *n* in the interval. It is acceptable just to show $8^2 - 8 - 1 = 55$

A1: States that when n = 8 it is FALSE and provides evidence. A comment that $55 = 11 \times 5$ and hence not prime is required

(ii)

See scheme for two examples of proof

Note that Alt (i) works equally well with an odd number of the form 2n-1

For example
$$(2n-1)^3 - (2n-1)^2 = (2n-1)^2 \{2n-1-1\} = (2n-1)^2 \{2n-2\} = 2 \times (2n-1)^2 \{n-1\}$$