Question	Scheme	Marks	AOs
9	$2\log_4(2-x) - \log_4(x+5) = 1$		
	Uses the power law $\log_4 (2-x)^2 - \log_4 (x+5) = 1$	M1	1.1b
	Uses the subtraction law $\log_4 \frac{(2-x)^2}{(x+5)} = 1$	M1	1.1b
	$\frac{(2-x)^2}{(x+5)} = 4 \rightarrow 3\text{TQ in } x$	dM1	3.1a
	$x^2 - 8x - 16 = 0$	A1	1.1b
	$(x-4)^2 = 32 \Longrightarrow x =$	M1	1.1b
	$x = 4 - 4\sqrt{2}$ oe only	A1	2.3
		(6)	

(6 marks)

Notes:

M1: Uses the power law of logs $2\log_4(2-x) = \log_4(2-x)^2$

M1: Uses the subtraction law of logs following the above $\log_4(2-x)^2 - \log_4(x+5) = \log_4\frac{(2-x)^2}{(x+5)}$

Alternatively uses the addition law following use of $1 = \log_4 4$ That is $1 + \log_4 (x+5) = \log_4 4(x+5)$

dM1: This can be awarded for the overall strategy leading to a 3TQ in x. It is dependent upon the correct use of both previous M's and for undoing the logs to reach a 3TQ equation in x

A1: For a correct equation in *x*

M1: For the correct method of solving their 3TQ = 0

A1: $x = 4 - 4\sqrt{2}$ or exact equivalent only. (For example accept $x = 4 - \sqrt{32}$)