Question	Scheme		Marks	AOs
12(a)	Sets $3x - 2\sqrt{x} = 8x - 16$		B1	1.1a
	$2\sqrt{x} = 16 - 5x$ $4x = (16 - 5x)^2 \Longrightarrow x =$	$5x + 2\sqrt{x} - 16 = 0$ $\Rightarrow (5\sqrt{x} \pm 8)(\sqrt{x} \pm 2) = 0$	M1	3.1a
	$25x^2 - 164x + 256 = 0$	$\left(5\sqrt{x}-8\right)\left(\sqrt{x}+2\right)=0$	A1	1.1b
	$(25x-64)(x-4) = 0 \Longrightarrow x =$	$\sqrt{x} = \frac{8}{5}, (-2) \Longrightarrow x = \dots$	M1	1.1b
	$x = \frac{64}{25}$ only		A1	2.3
			(5)	
(b)	Attempts to solve $3x - 2\sqrt{x} = 0$		M1	2.1
	Correct solution $x = \frac{4}{9}$		A1	1.1b
	$y_{,,} 3x - 2\sqrt{x} ,$	$y > 8x - 16 \ x \dots \frac{4}{9}$	B1ft	1.1b
			(3)	
	(8 ma			

Notes:

(a)

B1: Sets the equations equal to each other and achieves a correct equation

M1: Awarded for the key step in solving the problem. This can be awarded via two routes. Both routes must lead to a value for x.

- Making the \sqrt{x} term the subject and squaring both sides (not each term)
- Recognising that this is a quadratic in \sqrt{x} and attempting to factorise $\Rightarrow (5\sqrt{x} \pm 8)(\sqrt{x} \pm 2) = 0$

A1: A correct intermediate line $25x^2 - 164x + 256 = 0$ or $(5\sqrt{x} - 8)(\sqrt{x} + 2) = 0$

M1: A correct method to find at least one value for *x*. Way One it is for factorising (usual rules), Way Two it is squaring at least one result of their \sqrt{x}

A1: Realises that $x = \frac{64}{25}$ is the only solution $x = \frac{64}{25}$, 4 is A0 (b) M1: Attempts to solve $3x - 2\sqrt{x} = 0$ For example Allow $3x = 2\sqrt{x} \Rightarrow 9x^2 = 4x \Rightarrow x = ...$ Allow $3x = 2\sqrt{x} \Rightarrow x^{\frac{1}{2}} = \frac{2}{3} \Rightarrow x = ...$ A1: Correct solution to $3x - 2\sqrt{x} = 0 \Rightarrow x = \frac{4}{9}$ B1: For a consistent solution defining *R* using either convention

Either y,
$$3x - 2\sqrt{x}$$
, $y > 8x - 16 x \dots \frac{4}{9}$ Or $y < 3x - 2\sqrt{x}$, $y \dots 8x - 16 x > \frac{4}{9}$