Question	Scheme	Marks	AOs
2(i)	$x^{2}-8 x+17=(x-4)^{2}-16+17$	M1	3.1a
	$=(x-4)^{2}+1$ with comment (see notes)	A1	1.1b
	As $(x-4)^{2} \geqslant 0 \Rightarrow(x-4)^{2}+1 \geqslant 1$ hence $x^{2}-8 x+17>0$ for all x	A1	2.4
		(3)	
(ii)	For an explanation that it may not always be true Tests say $x=-5 \quad(-5+3)^{2}=4$ whereas $(-5)^{2}=25$	M1	2.3
	States sometimes true and gives reasons Eg. when $\quad x=5 \quad(5+3)^{2}=64$ whereas $(5)^{2}=25$ True When $\quad x=-5 \quad(-5+3)^{2}=4 \quad$ whereas $(-5)^{2}=25$ Not true	A1	2.4
		(2)	
(5 marks)			

Notes

(i) Method One: Completing the Square

M1: For an attempt to complete the square. Accept $(x-4)^{2} \ldots$
A1: For $(x-4)^{2}+1$ with either $(x-4)^{2} \geqslant 0,(x-4)^{2}+1 \geqslant 1$ or min at $(4,1)$. Accept the inequality statements in words. Condone $(x-4)^{2}>0$ or a squared number is always positive for this mark. A1: A fully written out solution, with correct statements and no incorrect statements. There must be a valid reason and a conclusion

$$
\begin{aligned}
& x^{2}-8 x+17 \\
= & (x-4)^{2}+1 \geqslant 1 \text { as }(x-4)^{2} \geqslant 0
\end{aligned} \quad \text { scores M1 A1 A1 }
$$

Hence $(x-4)^{2}+1>0$

$$
\begin{aligned}
& x^{2}-8 x+17>0 \\
& (x-4)^{2}+1>0
\end{aligned} \quad \text { scores M1 A1 A1 }
$$

This is true because $(x-4)^{2} \geqslant 0$ and when you add 1 it is going to be positive

$$
\begin{aligned}
& x^{2}-8 x+17>0 \\
& (x-4)^{2}+1>0
\end{aligned}
$$

which is true because a squared number is positive incorrect and incomplete

$$
x^{2}-8 x+17=(x-4)^{2}+1
$$

\square
scores M1 A1 A0
Minimum is $(4,1)$ so $x^{2}-8 x+17>0 \quad$ correct but not explained

$$
x^{2}-8 x+17=(x-4)^{2}+1
$$

$$
\begin{aligned}
& x^{2}-8 x+17>0 \\
& (x-4)^{2}+1>0
\end{aligned}
$$

Method Two: Use of a discriminant

M1: Attempts to find the discriminant $b^{2}-4 a c$ with a correct a, b and c which may be within a quadratic formula. You may condone missing brackets.
A1: Correct value of $b^{2}-4 a c=-4$ and states or shows curve is U shaped (or intercept is $(0,17)$) or equivalent such as + ve x^{2} etc
A1: Explains that as $b^{2}-4 a c<0$, there are no roots, and curve is U shaped then $x^{2}-8 x+17>0$

Method Three: Differentiation

M1: Attempting to differentiate and finding the turning point. This would involve attempting to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, then setting it equal to 0 and solving to find the x value and the y value.
A1: For differentiating $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-8 \Rightarrow(4,1)$ is the turning point
A1: Shows that $(4,1)$ is the minimum point (second derivative or U shaped), hence $x^{2}-8 x+17>0$

Method 4: Sketch graph using calculator

M1: Attempting to sketch $y=x^{2}-8 x+17$, U shape with minimum in quadrant one
A1: As above with minimum at $(4,1)$ marked
A1: Required to state that quadratics only have one turning point and as " 1 " is above the x-axis then $x^{2}-8 x+17>0$
(ii)

Numerical approach

Do not allow any marks if the student just mentions "positive" and "negative" numbers.
Specific examples should be seen calculated if a numerical approach is chosen.
M1: Attempts a value (where it is not true) and shows/implies that it is not true for that value. For example, for $-4:(-4+3)^{2}>(-4)^{2}$ and indicates not true (states not true, \mathbf{x})
or writing $(-4+3)^{2}<(-4)^{2}$ is sufficient to imply that it is not true
A1: Shows/implies that it can be true for a value AND states sometimes true.
For example for $+4:(4+3)^{2}>4^{2}$ and indicates true \checkmark
or writing $(4+3)^{2}>4^{2}$ is sufficient to imply this is true following $(-4+3)^{2}<(-4)^{2}$ condone incorrect statements following the above such as 'it is only true for positive numbers' as long as they state "sometimes true" and show both cases.
Algebraic approach
M1: Sets the problem up algebraically Eg. $(x+3)^{2}>x^{2} \Rightarrow x>k$ Any inequality is fine. You may condone one error for the method mark. Accept $(x+3)^{2}>x^{2} \Rightarrow 6 x+9>0$ oe

A1: States sometimes true and states/implies true for $x>-\frac{3}{2}$ or states/implies not true for $x \leq-\frac{3}{2}$ In both cases you should expect to see the statement "sometimes true" to score the A1

