Question	Scheme	Marks	AOs	
2(i)	$x^{2} - 8x + 17 = (x - 4)^{2} - 16 + 17$	M1	3.1a	
	$=(x-4)^2+1$ with comment (see notes)	A1	1.1b	
	As $(x-4)^2 \ge 0 \implies (x-4)^2 + 1 \ge 1$ hence $x^2 - 8x + 17 > 0$ for all x	A1	2.4	
		(3)		
(ii)	For an explanation that it may not always be true $(5)^2$	M1	2.3	
	Tests say $x = -5$ $(-5+3)^2 = 4$ whereas $(-5)^2 = 25$			
	States sometimes true and gives reasons Eg. when $x=5(5+3)^2=64$ whereas $(5)^2=25$ True			
		A1	2.4	
	When $x = -5$ $(-5+3)^2 = 4$ whereas $(-5)^2 = 25$ Not true	(2)		
		(2)	marks)	
Notes				
(i) Method One: Completing the Square				
M1: For an attempt to complete the square. Accept $(x-4)^2$				
A1: For $(x-4)^2 + 1$ with either $(x-4)^2 \ge 0, (x-4)^2 + 1 \ge 1$ or min at (4,1). Accept the inequality				
statements in words. Condone $(x-4)^2 > 0$ or a squared number is always positive for this mark.				
A1: A fully written out solution, with correct statements and no incorrect statements. There must				
be a valid reason and a conclusion				
$x^{2} - 8x + 17$				
	$=(x-4)^{2}+1 \ge 1 \text{ as } (x-4)^{2} \ge 0$ scores M1		A1 A1	
Hence $(x-4)^2 + 1 > 0$				
Hence $(x-4) + 1 > 0$				
$x^2 - 8x + 17$	/>0			
$(x-4)^2+1$	scores MI AI AI			
This is true because $(x-4)^2 \ge 0$ and when you add 1 it is going to be positive				
This is the because $(x + y) \ge 0$ and when you and Theis going to be positive				
$x^2 - 8x + 17$	<i>'</i> > 0			
$(x-4)^2+1$	scores MLALAU			
which is true because a squared number is positive incorrect and incor		mplete		
$x^{2} - 8x + 17 = (x - 4)^{2} + 1$ scores M1 A1 A		X 0		
Minimum is (4,1) so $x^2 - 8x + 17 > 0$ correct but not explained				
$x^{2} - 8x + 17 = (x - 4)^{2} + 1$ scores M1 A1 A1				
Minimum is (4,1) so as $1 > 0 \Rightarrow x^2 - 8x + 17 > 0$ correct and explained				

 $x^{2} - 8x + 17 > 0$ scores M1 A0 (no explanation) A0 $(x-4)^2+1>0$ Method Two: Use of a discriminant **M1:** Attempts to find the discriminant $b^2 - 4ac$ with a correct a, b and c which may be within a quadratic formula. You may condone missing brackets. A1: Correct value of $b^2 - 4ac = -4$ and states or shows curve is U shaped (or intercept is (0,17)) or equivalent such as +ve x^2 etc A1: Explains that as $b^2 - 4ac < 0$, there are no roots, and curve is U shaped then $x^2 - 8x + 17 > 0$ **Method Three: Differentiation** M1: Attempting to differentiate and finding the turning point. This would involve attempting to find $\frac{dy}{dx}$, then setting it equal to 0 and solving to find the x value and the y value. A1: For differentiating $\frac{dy}{dx} = 2x - 8 \Rightarrow (4,1)$ is the turning point A1: Shows that (4,1) is the minimum point (second derivative or U shaped), hence $x^{2} - 8x + 17 > 0$ Method 4: Sketch graph using calculator M1: Attempting to sketch $y = x^2 - 8x + 17$, U shape with minimum in quadrant one A1: As above with minimum at (4,1) marked A1: Required to state that quadratics only have one turning point and as "1" is above the x-axis then $x^2 - 8x + 17 > 0$ (ii) Numerical approach Do not allow any marks if the student just mentions "positive" and "negative" numbers. Specific examples should be seen calculated if a numerical approach is chosen. M1: Attempts a value (where it is not true) and shows/implies that it is not true for that value. For example, for -4: $(-4+3)^2 > (-4)^2$ and indicates not true (states not true, *****) or writing $(-4+3)^2 < (-4)^2$ is sufficient to imply that it is not true A1: Shows/implies that it can be true for a value AND states sometimes true. For example for +4: $(4+3)^2 > 4^2$ and indicates true \checkmark or writing $(4+3)^2 > 4^2$ is sufficient to imply this is true following $(-4+3)^2 < (-4)^2$ condone incorrect statements following the above such as 'it is only true for positive numbers' as long as they state "sometimes true" and show both cases. Algebraic approach M1: Sets the problem up algebraically Eg. $(x+3)^2 > x^2 \Rightarrow x > k$ Any inequality is fine. You may condone one error for the method mark. Accept $(x+3)^2 > x^2 \Longrightarrow 6x+9 > 0$ oe A1: States sometimes true and states/implies true for $x > -\frac{3}{2}$ or states/implies not true for

 $x \le -\frac{3}{2}$ In both cases you should expect to see the statement "sometimes true" to score the A1