4	States gradient of $4y-3x=10$ is $\frac{3}{4}$ oe or rewrites as $y = \frac{3}{4}x +$	B1	1.1b
	Attempts to find gradient of line joining $(5,-1)$ and $(-1,8)$	M1	1.1b
	$=\frac{-1-8}{5-(-1)}=-\frac{3}{2}$	A1	1.1b
	States neither with suitable reasons	A1	2.4
		(4)	
		(4 marks)
Notes			

Explains that they are neither parallel as the gradients not equal nor perpendicular as $\frac{3}{4} \times -\frac{3}{2} \neq -1$

Allow a statement in words "they are not negative reciprocals" for a reason for not perpendicular

Scheme

Marks

AOs

B1: States that the gradient of line l_1 is $\frac{3}{4}$ or writes l_1 in the form $y = \frac{3}{4}x + ...$

M1: Attempts to find the gradient of line l_2 using $\frac{\Delta y}{\Delta x}$ Condone one sign error Eg allow $\frac{9}{6}$

A1: For the gradient of $l_2 = \frac{-1-8}{5-(-1)} = -\frac{3}{2}$ or the equation of $l_2 y = -\frac{3}{2}x + \dots$

A1: CSO (on gradients)

oe

Question

Allow for any equivalent such as $-\frac{9}{6}$ or -1.5

and "they are not equal" for a reason for not being parallel