10		Marks	AOs
10	Considers $\frac{(x+h)^3 - x^3}{h}$	B1	2.1
	Expands $(x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$	M1	1.1b
	so gradient (of chord) = $\frac{3x^2h + 3xh^2 + h^3}{h} = 3x^2 + 3xh + h^2$	A1	1.1b
	States as $h \rightarrow 0$, $3x^2 + 3xh + h^2 \rightarrow 3x^2$ so derivative = $3x^2$ *	A1*	2.5
		(4	marks)
	the correct fraction for the gradient of the chord either $\frac{(x+h)^3 - x^3}{h}$ of also be awarded for $\frac{(x+h)^3 - x^3}{x+h-x}$ oe. It may be seen in an expanded	0.4	$\frac{x^3-x^3}{c}$
	not have to be linked to the gradient of the chord		
M1: Attem This is inde A1: Achiev $3x^2 + 2xh +$ the chord A1*: CSO. gradient of	apts to expand $(x+h)^3$ or $(x+\delta x)^3$ Look for two correct terms, most 1 ependent of the B1 wes gradient (of chord) is $3x^2 + 3xh + h^2$ or exact un simplified equiva $+xh + h^2$. Again, there is no requirement to state that this expression is Requires correct algebra and making a link between the gradient of the curve. See below how the link can be made. The words "gradient be mentioned but derivative, $f'(x)$, $\frac{dy}{dx}$, y' should be. Condone invisi	the chord a the chord a	as ent of and the ord" do
			101
Requires ei	ion of $(x+h)^3$ as long as it is only seen at the side as intermediate we ther	лкш <u>g</u> .	
	$x)_{\lim h \to 0} = \frac{(x+h)^3 - x^3}{h} = 3x^2 + 3xh + h^2 = 3x^2$		

• Gradient of chord $= 3x^2 + 3xh + h^2$ As $h \rightarrow 0$ Gradient of chord tends to the gradient of curve so derivative is $3x^2$

M1: As above A1: $\frac{6x^2h^2 + 2h^3}{2h} = 3x^2 + h^2$

- $f'(x) = 3x^2 + 3xh + h^2 = 3x^2$
- Gradient of **chord** = $3x^2 + 3xh + h^2$ when $h \rightarrow 0$ gradient of **curve** = $3x^2$
- Do not allow h = 0 alone without limit being considered somewhere: so don't accept $h = 0 \Rightarrow f'(x) = 3x^2 + 3x \times 0 + 0^2 = 3x^2$

Alternative: B1: Considers $\frac{(x+h)^3 - (x-h)^3}{2h}$