Question	Scheme	Marks	AOs
11(a)	$\left(2-\frac{x}{16}\right)^{9}=2^{9}+\binom{9}{1} 2^{8} \cdot\left(-\frac{x}{16}\right)+\binom{9}{2} 2^{7} \cdot\left(-\frac{x}{16}\right)^{2}+\ldots$	M1	1.1b
	$\left(2-\frac{x}{16}\right)^{9}=512+\ldots$	B1	1.1b
	$\left(2-\frac{x}{16}\right)^{9}=\ldots-144 x+\ldots$	A1	1.1b
	$\left(2-\frac{x}{16}\right)^{9}=\ldots+\ldots+18 x^{2}(+\ldots)$	A1	1.1b
		(4)	
(b)	Sets ' $512{ }^{\prime} a=128 \Rightarrow a=\ldots$	M1	1.1 b
	$(a=) \frac{1}{4}$ oe	A1 ft	1.1b
		(2)	
(c)	Sets ' $512{ }^{\prime} b+{ }^{\prime}-144 ' a=36 \Rightarrow b=\ldots$	M1	2.2a
	$(b=) \frac{9}{64}$ oe	A1	1.1b
		(2)	
(8 marks)			
11(a) alt	$\left(2-\frac{x}{16}\right)^{9}=2^{9}\left(1-\frac{x}{32}\right)^{9}=2^{9}\left(1+\binom{9}{1}\left(-\frac{x}{32}\right)+\binom{9}{2}\left(-\frac{x}{32}\right)^{2}+\ldots\right)$	M1	1.1b
	$=512+\ldots$	B1	1.1 b
	$=\ldots-144 x+\ldots$	A1	1.1 b
	$=\ldots+\ldots+18 x^{2}(+\ldots)$	A1	1.1b
Notes (a) M1: Attempts the binomial expansion. May be awarded on either term two and/or term three Scored for a correct binomial coefficient combined with a correct power of 2 and a correct power of $\left(\pm \frac{x}{16}\right)$ Condone $\binom{9}{2} 2^{7} .\left(-\frac{x^{2}}{16}\right)$ for term three. Allow any form of the binomial coefficient. Eg $\binom{9}{2}={ }^{9} C_{2}=\frac{9!}{7!2!}=36$ In the alternative it is for attempting to take out a factor of 2 (may allow 2^{n} outside bracket) and having a correct binomial coefficient combined with a correct power of $\left(\pm \frac{x}{32}\right)$			

B1: For 512

A1: For $-144 x$
A1: For $+18 x^{2}$ Allow even following $\left(+\frac{x}{16}\right)^{2}$
Listing is acceptable for all 4 marks
(b)

M1: For setting their $512 a=128$ and proceeding to find a value for a. Alternatively they could substitute $x=0$ into both sides of the identity and proceed to find a value for a.
A1 ft: $a=\frac{1}{4}$ oe Follow through on $\frac{128}{\text { their } 512}$
(c)

M1: Condone $512 b \pm 144 \times a=36$ following through on their 512 , their -144 and using their value of " a " to find a value for " b "
A1: $b=\frac{9}{64}$ oe

