Question	Scheme	Marks	AUS
12 (a)	$4\cos\theta - 1 = 2\sin\theta \tan\theta \Rightarrow 4\cos\theta - 1 = 2\sin\theta \times \frac{\sin\theta}{\cos\theta}$	M1	1.2

	$\Rightarrow 4\cos^2\theta - \cos\theta = 2\sin^2\theta$ oe	A1	1.1b
	$\Rightarrow 4\cos^2\theta - \cos\theta = 2(1 - \cos^2\theta)$	M1	1.1b
	$6\cos^2\theta - \cos\theta - 2 = 0 *$	A1*	2.1
		(4)	
(b)	For attempting to solve given quadratic	M1	1.1b
	$\left(\cos 3x\right) = \frac{2}{3}, -\frac{1}{2}$	B1	1.1b
	$x = \frac{1}{3}\arccos\left(\frac{2}{3}\right) \text{ or } \frac{1}{3}\arccos\left(-\frac{1}{2}\right)$	M1	1.1b
	$x = 40^{\circ}, 80^{\circ}, \text{ awrt } 16.1^{\circ}$	A1	2.2a
		(4)	

(8 marks)

Notes

(a)

M1: Recall and use the identity $\tan \theta = \frac{\sin \theta}{\cos \theta}$

Note that it cannot just be stated.

A1: $4\cos^2\theta - \cos\theta = 2\sin^2\theta$ oe.

This is scored for a correct line that does not contain any fractional terms.

It may be awarded later in the solution after the identity $1-\cos^2\theta = \sin^2\theta$ has been used Eg for $\cos\theta(4\cos\theta - 1) = 2(1-\cos^2\theta)$ or equivalent

M1: Attempts to use the correct identity $1-\cos^2\theta = \sin^2\theta$ to form an equation in just $\cos\theta$ **A1*:** Proceeds to correct answer through rigorous and clear reasoning. No errors in notation or bracketing. For example $\sin^2\theta = \sin\theta^2$ is an error in notation **(b)**

M1: For attempting to solve the given quadratic " $6y^2 - y - 2 = 0$ " where y could be $\cos 3x$, $\cos x$, or even just y. When factorsing look for (ay+b)(cy+d) where $ac = \pm 6$ and $bd = \pm 2$

This may be implied by the correct roots (even award for $\left(y \pm \frac{2}{3}\right)\left(y \pm \frac{1}{2}\right)$), an attempt at

factorising, an attempt at the quadratic formula, an attempt at completing the square and even \pm the correct roots.

B1: For the roots $\frac{2}{3}$, $-\frac{1}{2}$ oe

M1: Finds at least one solution for x from $\cos 3x$ within the given range for their $\frac{2}{3}$, $-\frac{1}{2}$

A1: $x = 40^{\circ}, 80^{\circ}$, awrt 16.1° **only** Withhold this mark if there are **any** other values even if they are outside the range. Condone 40 and 80 appearing as 40.0 and 80.0