

		(6)	 marks)
	Deduces $k < 0, k > \frac{15}{8}$ oe	A1	2.2a
	Uses $b^2 - 4ac > 0$ and chooses the outside region (see note) for their critical values (Both <i>a</i> and <i>b</i> must have been expressions in <i>k</i>)	dM1	3.1a
	Attempts $b^2 - 4ac0$ for their a, b and c leading to values for k " $(10k-6)^2 - 36(1+k^2)0$ " $\rightarrow k =,$ $\left(0 \text{ and } \frac{15}{8}\right)$	M1	1.1b
	Collects terms to form correct 3TQ $(1+k^2)x^2 + (10k-6)x + 9 = 0$	A1	1.1b
	Substitute $y = kx$ in $x^2 + y^2 - 6x + 10y + 9 = 0$	M1	3.1a
(b)	Uses a sketch or otherwise to deduce $k = 0$ is a critical value	B1	2.2a
		(3)	
	(ii) Radius 5	A1	1.1b
	(i) Centre $(3, -5)$	A1	1.1b

Notes

(a)

M1: Attempts $(x \pm 3)^2 + (y \pm 5)^2 = ...$

This mark may be implied by candidates writing down a centre of $(\pm 3, \pm 5)$ or $r^2 = 25$

(i) A1: Centre (3, -5)

(ii) A1: Radius 5. Do not accept $\sqrt{25}$ Answers only (no working) scores all three marks

(b)

B1: Uses a sketch or their subsequent quadratic to deduce that k = 0 is a critical value. You may award for the correct k < 0 but award if $k \leq 0$ or even with greater than symbols

M1: Substitutes y = kx in $x^2 + y^2 - 6x + 10y + 9 = 0$ or their $(x \pm 3)^2 + (y \pm 5)^2 = ...$ to form an

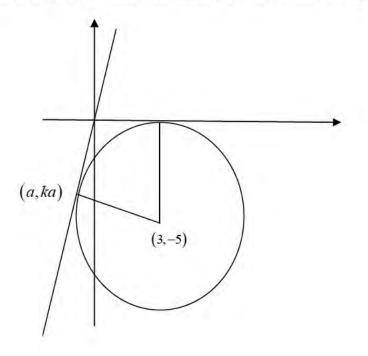
equation in just x and k. It is possible to substitute $x = \frac{y}{k}$ into their circle equation to form an equation in just y and k.

A1: Correct 3TQ $(1+k^2)x^2 + (10k-6)x + 9 = 0$ with the terms in x collected. The "= 0" can be implied by subsequent work. This may be awarded from an equation such as

 $x^{2} + k^{2}x^{2} + (10k-6)x + 9 = 0$ so long as the correct values of a, b and c are used in $b^{2} - 4ac...0$.

FYI The equation in y and k is $(1+k^2)y^2 + (10k^2 - 6k)y + 9k^2 = 0$ oe

M1: Attempts to find two critical values for k using $b^2 - 4ac...0$ or $b^2...4ac$ where ... could be "=" or any inequality.


dM1: Finds the outside region using their critical values. Allow the boundary to be included. It is dependent upon all previous M marks and both a and b must have been expressions in k.

Note that it is possible that the correct region could be the inside region if the coefficient of k^2 in 4ac is larger than the coefficient of k^2 in b^2 Eg.

 $b^{2} - 4ac = (k-6)^{2} - 4 \times (1+k^{2}) \times 9 > 0 \Longrightarrow -35k^{2} - 12k > 0 \Longrightarrow k(35k+12) < 0$

A1: Deduces $k < 0, k > \frac{15}{8}$. This must be in terms of k. Allow exact equivalents such as $k < 0 \cup k > 1.875$ but not allow $0 > k > \frac{15}{8}$ or the above with AND, & or \cap between the two inequalities

Alternative using a geometric approach with a triangle with vertices at (0,0), and (3,-5)

Uses a sketch or	otherwise to deduce $k = 0$ is a critical value	B1	2.2a
the second	(a, ka) to $(0, 0)$ is $3 \Longrightarrow a^2 (1+k^2) = 9$	M1	3.1a
	ius are perpendicular $1 \Rightarrow a(1+k^2) = 3-5k$	M1	3.1a
Solve simultaneo	ously, (dependent upon both M's)	dM1	1.1b
k =-	15 8	A1	1.1b
	Deduces $k < 0, k > \frac{15}{8}$	A1	2.2a
		(6)	