Question	Scheme		Marks	AOs
2(i)	$16a^2 = 2\sqrt{a} \Longrightarrow a^{\frac{3}{2}} = \frac{1}{8}$	$16a^{2} - 2\sqrt{a} = 0$ $\Rightarrow 2a^{\frac{1}{2}} \left(8a^{\frac{3}{2}} - 1 \right) = 0$ $\Rightarrow a^{\frac{3}{2}} = \frac{1}{8}$	M1	1.1b
	$\Rightarrow a = \left(\frac{1}{8}\right)^{\frac{2}{3}}$	$\Rightarrow a = \left(\frac{1}{8}\right)^{\frac{2}{3}}$	M1	1.1b
	$\Rightarrow a = \frac{1}{4}$	$\Rightarrow a = \frac{1}{4}$	A1	1.1b
	Deduces that a	=0 is a solution	B1	2.2a
			(4)	
(ii)	(ii) $b^4 + 7b^2 - 18 = 0 \Rightarrow (b^2 + 9)(b^2 - 2) = 0$ $b^2 = -9, 2$		M1	1.1b
			A1	1.1b
	$b^2 = k \Longrightarrow b = \sqrt{k}, k > 0$		dM1	2.3
	$b=\sqrt{2}$, $-\sqrt{2}$	only	A1	1.1b
(8 marks)				
(i)				
M1: Combines the two algebraic terms to reach $a^{\pm \frac{3}{2}} = C$ or equivalent such as $(\sqrt{a})^3 = C$				
$(C \neq 0)$				
An alternative is via squaring and combining the algebraic terms to reach $a^{\pm 3} = k, k > 0$				
Eg. $a^{\dagger} =a \Rightarrow a^{-} = k$ or $a^{\dagger} =a \Rightarrowa^{\dagger}a = 0 \Rightarrowa(a^{\dagger}) = 0 \Rightarrow a^{\dagger} =$				
Allow for slips on coefficients.				
M1: Undoes the indices correctly for their $a^{\frac{m}{n}} = C$ (So M0 M1 A0 is possible) You may even see logs used.				
A1: $a = \frac{1}{4}$ and no other solutions apart from 0 Accept exact equivalents Eg 0.25 B1: Deduces that $a = 0$ is a solution.				
 (ii) M1: Attempts to solve as a quadratic equation in b² Accept (b² + m)(b² + n) = 0 with mn = ±18 or solutions via the use of the quadratic formula Also allow candidates to substitute in another variable, say u = b² and solve for u A1: Correct solution. Allow for b² = 2 or u = 2 with no incorrect solution given. 				

Candidates can choose to omit the solution $b^2 = -9$ or u = -9 and so may not be seen **dM1**: Finds at least one solution from their $b^2 = k \Rightarrow b = \sqrt{k}, k > 0$. Allow b = 1.414

A1: $b = \sqrt{2}$, $-\sqrt{2}$ only. The solution asks for real values so if 3i is given then score A0 Notes on Ouestion 2 continue Answers with minimal or no working: In part (i) no working, just answer(s) with they can score the B1 If they square and proceed to the quartic equation $256a^4 = 4a$ oe, and then • write down the answers they can have access to all marks. In part (ii)

- Accept for 4 marks $b^2 = 2 \Longrightarrow b = \pm \sqrt{2}$
- No working, no marks.