Question	Scheme	Marks	AOs
4 (a)	Attempts $H = mt + c$ with both (3,2.35) and (6,3.28)	M1	3.3
	Method to find both <i>m</i> and <i>c</i>	dM1	3.1a
	H = 0.31t + 1.42 oe	A1	1.1b
		(3)	
(b)	Uses the model and states that the initial height is their 'b'	B1ft	3.4
	Compares 140 cm with their 1.42 (m) and makes a valid comment. In the case where $H = 0.31t + 1.42$ it should be this fact supports the use of the linear model as the values are close.	B1ft	3.5a
		(2)	
(5 marks)			
Notes			
Allow for an attempt at the "gradient" $m = \frac{3.28 - 2.35}{6-3} (= 0.31)$ or the intercept. Allow for a pair of simultaneous in any variable even x and y dM1: A full method to find both constants. For simultaneous equations award if they arrive at values for m and c. If they attempted the gradient it would be for attempting to find "c" using $y = mx + c$ with their m and one of the points $(3, 2.35)$ or $(6, 3.28)$ A1: A correct model using allowable/correct variables. $H = 0.31t + 1.42$ Condone $h \leftrightarrow H, t \leftrightarrow T$ Allow equivalents such as $H = \frac{31}{100}t + \frac{142}{100}, t = \frac{H - 1.42}{0.31}$ but not $H = \frac{0.93}{3}t + 1.42$ Do not allow $H = 0.31t + 1.42$ m (with the units)			
B1ft: State origi You Follo	To score any marks in (b) the model must be of the form $H = mt + b$ where $m > 0, b > 0$: States or implies that 1.42 (with or without units) or 142 cm (including the units) is the original height or the height when $t = 0$ You should allow statements such as $c = 1.42$ or original height = 1.42 (m) Follow through on their value of 'c', so for $H = 0.25t + 1.60$ it is scored for stating the initial height is 1.60 (m) or 160 cm. Do not follow through if $c \le 0$		
B1ft: Compares 140 cm with their 1.42 (m) and makes a valid comment. In the case where $H = 0.31t + 1.42$ it should be this fact supports the use of the linear model as the values are close or approximately the same. Allow $1.42m \approx 1.4m$ or similar In the case of $H = 0.25t + 1.60$ it would be for stating that the fact that it does not support			

In the case of H = 0.25t + 1.60 it would be for stating that the fact that it does not support the use of the model as the values are too different. If they state 1.60>1.40 this is insufficient. They cannot just state that they are not the same. It must be implied that there is a significant difference.

As a rule of thumb use "good model" for between 135cm and 145 cm.

This requires a correct calculation for their *H*, a correct statement with an appreciation shown for the units and a correct conclusion.

Notes on Question 4 continue

SC B1 B0 Award SC for incomplete answers which suggest the candidate knows what to do. Eg. In (b) H = 0.31t + 1.42 followed by in (c) It supports the model as when t = 0 it is approximately 140 cm