Question	Scheme	Marks	AOs
7 (a)	$\frac{1}{x}$ shape in 1st quadrant	M1	1.1b
	Correct	A1	1.1b
	Asymptote $y = 1$	B1	1.2
		(3)	
(b)	Combines equations $\Rightarrow \frac{k^2}{x} + 1 = -2x + 5$	M1	1.1b
	$(\times x) \Longrightarrow k^2 + 1x = -2x^2 + 5x \Longrightarrow 2x^2 - 4x + k^2 = 0 *$	A1*	2.1
		(2)	
(c)	Attempts to set $b^2 - 4ac = 0$	M1	3.1a
	$8k^2 = 16$	A1	1.1b
	$k = \pm \sqrt{2}$	A1	1.1b
		(3)	
(8 marks)			
Notes			

(a)

M1: For the shape of a $\frac{1}{x}$ type curve in Quadrant 1. It must not cross either axis and have acceptable curvature. Look for a negative gradient changing from $-\infty$ to 0 condoning "slips

of the pencil". (See Practice and Qualification for clarification)

A1: Correct shape and position for both branches.

It must lie in Quadrants 1, 2 and 3 and have the correct curvature including asymptotic behaviour

B1: Asymptote given as y = 1. This could appear on the diagram or within the text.

Note that the curve does not need to be asymptotic at y = 1 but this must be the only horizontal asymptote offered by the candidate.

(b)

M1: Attempts to combine $y = \frac{k^2}{x} + 1$ with y = -2x + 5 to form an equation in just x

A1*: Multiplies by x (the processed line must be seen) and proceeds to given answer with no slips.

Condone if the order of the terms are different $2x^2 + k^2 - 4x = 0$

(c)

M1: Deduces that $b^2 - 4ac = 0$ or equivalent for the given equation.

If a, b and c are stated only accept $a = 2, b = \pm 4, c = k^2$ so $4^2 - 4 \times 2 \times k^2 = 0$

Alternatively completes the square $x^2 - 2x + \frac{1}{2}k^2 = 0 \Rightarrow (x-1)^2 = 1 - \frac{1}{2}k^2 \Rightarrow "1 - \frac{1}{2}k^2 "= 0$

A1: $8k^2 = 16$ or exact simplified equivalent. Eg $8k^2 - 16 = 0$

If a, b and c are stated they must be correct. Note that b^2 appearing as 4^2 is correct

Note on Question 7 continue

A1: $k = \pm \sqrt{2}$ and following correct *a*, *b* and *c* if stated

A solution via differentiation would be awarded as follows

M1: Sets the gradient of the curve
$$= -2 \Rightarrow -\frac{k^2}{x^2} = -2 \Rightarrow x = (\pm)\frac{k}{\sqrt{2}}$$
 oe and attempts to

substitute into $2x^2 - 4x + k^2 = 0$ **A1**: $2k^2 = (\pm)2\sqrt{2}k$ oe **A1**: $k = \pm\sqrt{2}$