1			
		(2)	
(b)	$2x^3 - 13x^2 + 8x + 48 = (x - 4)(2x^2 \dots x - 12)$	M1	2.1
	$=(x-4)(2x^2-5x-12)$	A1	1.1b
	Attempts to factorise quadratic factor or solve quadratic eqn	dM1	1.1b
	$f(x) = (x-4)^2 (2x+3) \Rightarrow f(x) = 0$ has only two roots, 4 and -1.5	A1	2.4
	into only two roots, 1 and 1.5	(4)	
(c)	Deduces either three roots or deduces that $f(x)$ is moved down two units	M1	2.2a
	States three roots, as when $f(x)$ is moved down two units there will be three points of intersection (with the x - axis)	A1	2.4
	Will be the points of moreover (Will the Williams)	(2)	
(d)	For sight of $k = \pm 4, \pm \frac{3}{2}$	M1	1.1b
	For sight of $k = \pm 4, \pm \frac{3}{2}$ $k = 4, -\frac{3}{2}$	Alft	1.1b
		(2)	
		(10	marks)
	Notes		
(a)			
M1: Atten	apts to calculate $f(4)$.		
1	ot accept $f(4) = 0$ without sight of embedded values or calculations.		
	ues are not embedded look for two correct terms from $f(4)=128-2$	208+32+4	8
Alten			
1	natively attempts to divide by $(x-4)$. Accept via long division or inspelow for awarding these marks.		
See t	natively attempts to divide by $(x-4)$. Accept via long division or inspelow for awarding these marks. ct reason with conclusion. Accept $f(4) = 0$, hence factor as long as N	spection.	n
A1: Correct scored This s	natively attempts to divide by $(x-4)$. Accept via long division or inspelow for awarding these marks. ct reason with conclusion. Accept $f(4) = 0$, hence factor as long as N	spection. 11 has been lculation. I	t could

M1: Attempts to find the quadratic factor by inspection (correct first and last terms) or by

Scheme

Attempts $f(4) = 2 \times 4^3 - 13 \times 4^2 + 8 \times 4 + 48$

 $f(4) = 0 \Longrightarrow (x-4)$ is a factor

there is no remainder, hence factor

division (correct first two terms)

(b)

Marks

M1

A1

AOs

1.1b

1.1b

Question

11 (a)

Notes on Question 11 continue

So for inspection award for $2x^3 - 13x^2 + 8x + 48 = (x - 4)(2x^2...x \pm 12)$

$$\begin{array}{r}
 2x^2 - 5x \\
 x - 4 \overline{\smash{\big)}\ 2x^3 - 13x^2 + 8x + 48}
 \end{array}$$

 $\frac{2x^3 - 8x^2}{-5x^2}$ For division look for

$$-5x^{2}$$

A1: Correct quadratic factor $(2x^2 - 5x - 12)$ For division award for sight of this "in the correct place" You don't have to see it paired with the (x-4) for this mark.

If a student has used division in part (a) they can score the M1 A1 in (b) as soon as they start attempting to factorise their $(2x^2-5x-12)$. **dM1:** Correct attempt to solve or factorise their $(2x^2 - 5x - 12)$ including use of formula

Apply the usual rules $(2x^2-5x-12)=(ax+b)(cx+d)$ where $ac=\pm 2$ and $bd=\pm 12$

Allow the candidate to move from $(x-4)(2x^2-5x-12)$ to $(x-4)^2(2x+3)$ for this mark.

$$f(x) = 2(x-4)^2(x+\frac{3}{2})$$
 followed by a valid explanation why there are only two roots.

The explanation can be as simple as • hence x = 4 and $-\frac{3}{2}$ (only). The roots must be correct

Factorises twice to f(x) = (x-4)(2x+3)(x-4) or $f(x) = (x-4)^2(2x+3)$ or

There must be some understanding between roots and factors.

E.g.
$$f(x) = (x-4)^2 (2x+3)$$

only two distinct roots is insufficient.

This would require two distinct factors, so there are two distinct roots.

Via solving.

by

A1: Via factorisation

Factorsises to $(x-4)(2x^2-5x-12)$ and solves $2x^2-5x-12=0 \Rightarrow x=4,-\frac{3}{2}$ followed an explanation that the roots are $4,4,-\frac{3}{2}$ so only two distinct roots.

Note that this question asks the candidate to use algebra so you cannot accept any attempt to use their calculators to produce the answers. (c)

M1: For a valid deduction.

Accept either there are 3 roots or states that it is a solution of f(x) = 2 or f(x) - 2 = 0

A1: Fully explains: Eg. States three roots, as f(x) is moved down by **two** units (giving three points of

intersection with the x - axis) Eg. States three roots, as it is where f(x) = 2 (You may see y = 2 drawn on the diagram)

	Notes on Question 11 continue	
and $\pm \frac{3}{2}$	Follow through on ± their roots.	

M1: For sight of
$$\pm 4$$
 and $\pm \frac{3}{2}$ Follow through on \pm their roots.
A1ft: $k = 4, -\frac{3}{2}$ Follow through on their roots. Accept $4, -\frac{3}{2}$ but not $x = 4, -\frac{3}{2}$