Question	Scheme	Marks	AOs
12(a)	$\frac{10\sin^2\theta - 7\cos\theta + 2}{3 + 2\cos\theta} \equiv \frac{10(1 - \cos^2\theta) - 7\cos\theta + 2}{3 + 2\cos\theta}$	M1	1.1b
	$=\frac{12-7\cos\theta-10\cos^2\theta}{3+2\cos\theta}$	A1	1.1b
	$=\frac{(3+2\cos\theta)(4-5\cos\theta)}{3+2\cos\theta}$	M1	1.1b
	$\equiv 4 - 5\cos\theta *$	A1*	2.1
		(4)	
(b)	$4+3\sin x = 4-5\cos x \Longrightarrow \tan x = -\frac{5}{3}$	M1	2.1
	x = awrt 121°, 301°	A1 A1	1.1b 1.1b
		(3)	
(7 marks)			
Notes			
M1: Uses the identity $\sin^2 \theta = 1 - \cos^2 \theta$ within the fraction A1: Correct (simplified) expression in just $\cos \theta = \frac{12 - 7\cos\theta - 10\cos^2\theta}{3 + 2\cos\theta}$ or exact equivalent such as $\frac{(3 + 2\cos\theta)(4 - 5\cos\theta)}{3 + 2\cos\theta}$ Allow for $\frac{12 - 7u - 10u^2}{3 + 2u}$ where they introduce $u = \cos\theta$ We would condone mixed variables here. M1: A correct attempt to factorise the numerator, usual rules. Allow candidates to use $u = \cos\theta$ oe A1*: A fully correct proof with correct notation and no errors. Only withhold the last mark for (1) Mixed variable e.g. θ and x's (2) Poor notation $\cos\theta^2 \leftrightarrow \cos^2 \theta$ or $\sin^2 = 1 - \cos^2$ within the solution. Don't penalise incomplete lines if it is obvious that it is just part of their working E.g. $\frac{10\sin^2\theta - 7\cos\theta + 2}{3 + 2\cos\theta} = \frac{10(1 - \cos^2\theta) - 7\cos\theta + 2}{3 + 2\cos\theta} = \frac{12 - 7\cos\theta - 10\cos^2\theta}{3 + 2\cos\theta}$			
 M1: Attempts to use part (a) and proceeds to an equation of the form tan x = k, k ≠ 0 Condone θ↔ x Do not condone atanx = 0 ⇒ tanx = b ⇒ x = Alternatively squares 3sin x = -5cos x and uses sin² x = 1-cos² x oe to reach sin x = A, -1 < A < 1 or cos x = B, -1 < B < 1 A1: Either x = awrt 121° or 301°. Condone awrt 2.11 or 5.25 which are the radian solutions A1: Both x = awrt 121° and 301° and no other solutions. Answers without working, or with no incorrect working in (b). 			

Question states hence or otherwise so allow

For 3 marks both $x = a wrt 121^{\circ} and 301^{\circ}$ and no other solutions.

For 1 marks scored SC 100 for either $x = awrt 121^{\circ} \text{ or } 301^{\circ}$

Notes on Question 12 continue

Alternative proof in part (a): **M1:** Multiplies across and form 3TQ in $\cos\theta$ on rhs $10\sin^2\theta - 7\cos\theta + 2 = (4 - 5\cos\theta)(3 + 2\cos\theta) \Longrightarrow 10\sin^2\theta - 7\cos\theta + 2 = A\cos^2\theta + B\cos\theta + C$ A1: Correct identity formed $10\sin^2\theta - 7\cos\theta + 2 = -10\cos^2\theta - 7\cos\theta + 12$ **dM1:** Uses $\cos^2 \theta = 1 - \sin^2 \theta$ on the rhs or $\sin^2 \theta = 1 - \cos^2 \theta$ on the lhs Alternatively proceeds to $10\sin^2\theta + 10\cos^2\theta = 10$ and makes a statement about $\sin^2\theta + \cos^2\theta = 1$ or A1*: Shows that $(4-5\cos\theta)(3+2\cos\theta) \equiv 10\sin^2\theta - 7\cos\theta + 2$ or AND makes a minimal statement "hence true"