Question	Scheme	Marks	AOs
4 (a)	Attempts $A=m n+c$ with either $(0,190)$ or $(8,169)$ Or attempts gradient eg $m= \pm \frac{190-169}{8}(=-2.625)$	M1	3.3
	Full method to find a linear equation linking A with n E.g. Solves $190=0 n+c$ and $169=8 n+c$ simultaneously	dM1	3.1b
	$A=-2.625 n+190$	A1	1.1b
		(3)	
(b)	Attempts $A=-2.625 \times 19+190=\ldots$	M1	3.4
	$A=140.125 \mathrm{~g} \mathrm{~km}^{-1}$	A1	1.1b
	It is predicting a much higher value and so is not suitable	B1ft	3.5a
		(3)	

(6 marks)

Notes

(a)

M1: Attempts $A=m n+c$ with either $(0,190)$ or $(8,169)$ considered.
Eg Accept sight of $190=0 n+c$ or $169=8 m+c$ or $A-169=m(n-8)$ or $A=190+m n$ where m could be a value.
Also accept an attempt to find the gradient $\pm \frac{190-169}{8}$ or sight of ± 2.625 or $\pm \frac{21}{8}$ oe
dM1: A full method to find both constants of a linear equation
Method 1: Solves $190=0 n+c$ and $169=8 n+c$ simultaneously
Method 2: Uses gradient and a point Eg $m= \pm \frac{190-169}{8}(=-2.625)$ and $c=190$
Condone different variables for this mark. Eg. y in terms of x.
A1: $\quad A=-2.625 n+190$ or $A=-\frac{21}{8} n+190$ oe
(b)

M1: Attempts to substitute " n " $=19$ into their linear model to find A. They may call it $x=19$ Alternatively substitutes $A=120$ into their linear model to find n.

A1: $\quad A=140.125$ from $n=19$ Allow $A=140$
or $n=26 / 27$ following $A=120$
B1ft: Requires a correct calculation for their model, a correct statement and a conclusion
E.g For correct (a) $A=140$ is (much) higher than 120 so the model is not suitable/appropriate.
Follow through on a correct statement for their equation. As a guide allow anything within $[114,126]$ to be regarded as suitable. Anything less than 108 or more than 132 should be justified as unsuitable.

Note B0 Recorded value is not the same as/does not equal/does not match the value predicted

