Question	Scheme	Marks	AOs
$\mathbf{6}$ (a)	$(1+k x)^{10}=1+\binom{10}{1}(k x)^{1}+\binom{10}{2}(k x)^{2}+\binom{10}{3}(k x)^{3} \ldots$	M1 A1	1.1 b 1.1 b
	$=1+10 k x+45 k^{2} x^{2}+120 k^{3} x^{3} \ldots$	A1	1.1 b
	(b)	Sets $120 k^{3}=3 \times 10 k$	(3)
	$4 k^{2}=1 \Rightarrow k=\ldots$	B1	1.2
	$k= \pm \frac{1}{2}$	M1	1.1 b
		(3)	1.1 b

(6 marks)
(a)

M1: An attempt at the binomial expansion. This may be awarded for either the second or third term or fourth term. The coefficients may be of the form ${ }^{10} \mathrm{C}_{1},\binom{10}{2}$ etc or eg $\frac{10 \times 9 \times 8}{3!}$
A1: A correct unsimplified binomial expansion. The coefficients must be numerical so cannot be of the form ${ }^{10} \mathrm{C}_{1},\binom{10}{2}$. Coefficients of the form $\frac{10 \times 9 \times 8}{3!}$ are acceptable for this mark. The bracketing must be correct on $(k x)^{2}$ but allow recovery
A1: $\quad 1+10 k x+45 k^{2} x^{2}+120 k^{3} x^{3} \ldots$ or $1+10(k x)+45(k x)^{2}+120(k x)^{3} \ldots$
Allow if written as a list.
(b)

B1: \quad Sets their $120 k^{3}=3 \times$ their $10 k$ (Seen or implied)
For candidates who haven't cubed allow $120 k=3 \times$ their $10 k$
If they write $120 k^{3} x^{3}=3 \times$ their $10 k x$ only allow recovery of this mark if x disappears afterwards.

M1: Solves a cubic of the form $A k^{3}=B k$ by factorising out/cancelling the k and proceeding correctly to at least one value for k. Usually $k=\sqrt{\frac{B}{A}}$
A1: $\quad k= \pm \frac{1}{2}$ o.e ignoring any reference to 0

