Question	Scheme		Marks	AOs
8 (a)	Temperature = 83° C		B1	3.4
			(1)	
(b)	$18 + 65e^{-\frac{t}{8}} = 35 \Longrightarrow 65e^{-\frac{t}{8}} = 17$		M1	1.1b
	$t = -8\ln\left(\frac{17}{65}\right)$	$\ln 65 - \frac{t}{8} = \ln 17 \Longrightarrow t = \dots$	dM1	1.1b
	t = 10.7		A1	1.1b
			(3)	
(c)	States a suitable reason • As $t \to \infty, \theta \to 18$ from above. • The minimum temperature is 18°C		B1	2.4
			(1)	
(d)	$A + B = 94$ or $A + Be^{-1} = 50$		M1	3.4
	$A + B = 94$ and $A + Be^{-1} = 50$		A1	1.1b
	Full method to find at least a value for A		dM1	2.1
	Deduces $\mu = \frac{50e - 94}{e - 1}$ or accept $\mu = awrt 24.4$		A1	2.2a
			(4)	
(9 ma				marks)

Notes

(a)

- **B1:** Uses the model to state that the temperature $=83^{\circ}$ C Requires units as well
- (b)

M1: Uses the information and proceeds to $Pe^{\pm \frac{t}{8}} = Q$ condoning slips

dM1: A full method using correct log laws and a knowledge that e^x and $\ln x$ are inverse functions. This cannot be scored from unsolvable equations, e.g. P > 0, Q < 0. Condone one error in their solution.

A1: *t* = awrt 10.7

(c)

- **B1:** States a suitable reason with minimal conclusion
 - As $t \to \infty, \theta \to 18$ from above.
 - The minimum temperature is 18°C (so it cannot drop to 15°C)
 - Substitutes $\theta = 15$ (or a value between 15 and 18) into $18 + 65e^{-\frac{t}{8}} = 15$ (may be impied

by 15-18 = -3 or similar) and makes a statement that $e^{-\overline{8}}$ cannot be less than zero or else that $\ln(-ve)$ is undefined and hence $\theta \neq 15$. All calculations must be correct

• (According to the model) the room temperature is 18°C (so cannot fall below this)

(d)

- M1: Attempts to use (0,94) or (8,50) in order to form at least one equation in A and B Allow this to be scored with an equation containing e^0
- A1: Correct equations A + B = 94 and $A + Be^{-1} = 50$ or equivalent. $e^0 = 1$ must have been processed. Condone A + B = 94 and A + 0.37B = 50 where $e^{-1} =$ awrt 0.37
- **dM1:** Dependent upon having two equations in *A* and *B* formed from the information given. It is a full and correct method leading to a value of *A*. Allow this to be solved from a calculator. Note B = 69.6.. or $\frac{44}{1 - e^{-1}} \Rightarrow A = 94 - "B"$

A1: Deduces that $\mu = \frac{50e - 94}{e - 1}$ or accept $\mu = awrt \ 24.4$. Condone $y = \dots$