Question	Scheme	Marks	AOs
9 (a)	(-180°,-3)	B1	1.1b
		(1)	
(b)	(i) $(-720^{\circ}, -3)$	B1ft	2.2a
	(ii) $(-144^{\circ}, -3)$	B1 ft	2.2a
		(2)	
(c)	Attempts to use both $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\sin^2 \theta + \cos^2 \theta = 1$ and solves	M1	3.1a
	a quadratic equation in $\sin\theta$ to find at least one value of θ		
	$3\cos\theta = 8\tan\theta \Longrightarrow 3\cos^2\theta = 8\sin\theta$	B1	1.1b
	$3\sin^2\theta + 8\sin\theta - 3 = 0$ $(3\sin\theta - 1)(\sin\theta + 3) = 0$	M1	1.1b
	(55110 + 1)(5110 + 5) = 0		
	$\sin\theta = \frac{1}{3}$	A1	2.2a
	awrt 520.5° only	A1	2.1
		(5)	
(8 marks)			

(a)

B1: Deduces that $P(-180^\circ, -3)$ or $c = -180^{(\circ)}, d = -3$

(b)(i)

B1ft: Deduces that $P'(-720^\circ, -3)$ Follow through on their $(c, d) \rightarrow (4c, d)$ where d is negative (b)(ii)

B1ft: Deduces that $P'(-144^\circ, -3)$ Follow through on their $(c, d) \rightarrow (c+36^\circ, d)$ where d is negative

(c)

- M1: An overall problem solving mark, condoning slips, for an attempt to
 - use $\tan \theta = \frac{\sin \theta}{\cos \theta}$,
 - use $\pm \sin^2 \theta \pm \cos^2 \theta = \pm 1$
 - find at least one value of θ from a quadratic equation in $\sin \theta$
- **B1:** Uses the correct identity and multiplies across to give $3\cos\theta = 8\tan\theta \Rightarrow 3\cos^2\theta = 8\sin\theta$ oe
- M1: Uses the correct identity $\sin^2 \theta + \cos^2 \theta = 1$ to form a 3TQ in $\sin \theta$ which they attempt to solve using an appropriate method. It is OK to use a calculator to solve this
- A1: $\sin \theta = \frac{1}{3}$ Accept sight of $\frac{1}{3}$. Ignore any reference to the other root even if it is "used"
- **A1:** Full method with all identities correct leading to the answer of awrt 520.5° and no other values.