Questi	n Scheme	Marks	AOs	
11. (i	$x^{2} + y^{2} + 18x - 2y + 30 = 0 \Rightarrow (x+9)^{2} + (y-1)^{2} =$	M1	1.1b	
	Centre (-9,1)	A1	1.1b	
	Gradient of line from $P(-5,7)$ to " $(-9,1)$ " = $\frac{7-1}{-5+9} = \left(\frac{3}{2}\right)$	M1	1.1b	
	Equation of tangent is $y-7=-\frac{2}{3}(x+5)$	dM1	3.1a	
	$3y - 21 = -2x - 10 \Rightarrow 2x + 3y - 11 = 0$	A1	1.1b	
(**)	2 2	(5)		
(ii)	$x^{2} + y^{2} - 8x + 12y + k = 0 \Rightarrow (x-4)^{2} + (y+6)^{2} = 52 - k$	M1	1.1b	
	Lies in Quadrant 4 if radius $< 4 \Rightarrow "52 - k" < 4^2$	M1	3.1a	
	$\Rightarrow k > 36$	A1	1.1b	
	Deduces $52 - k > 0 \Rightarrow$ Full solution $36 < k < 52$	A1	3.2a	
		(4)	0 1)	
Notes (9 marks)				
(i) M1: Attempts $(x\pm 9)^2$ $(y\pm 1)^2$ = It is implied by a centre of $(\pm 9, \pm 1)$				
A1: States or uses the centre of C is $(-9,1)$				
M1: A correct attempt to find the gradient of the radius using their $(-9,1)$ and P . E.g. $\frac{7 - "1"}{-5 - "-9"}$				
dM1:	1: For the complete strategy of using perpendicular gradients and finding the equation of the			
	angent to the circle. It is dependent upon both previous M's. $y-7=-\frac{1}{9}$	1 radient <i>CP</i>	s(x+5)	
	Condone a sign slip on one of the -7 or the 5.	,		
A1:	$2x+3y-11=0$ oe such as $k(2x+3y-11)=0, k \in \mathbb{Z}$			
Attempt via implicit differentiation. The first three marks are awarded				
	Differentiates $x^2 + y^2 + 18x - 2y + 30 = 0 \Rightarrow \dots x + \dots y \frac{dy}{dx} + 18 - 2 \frac{dy}{dx} \dots = 0$	0		
A1:	Differentiates $x^2 + y^2 + 18x - 2y + 30 = 0 \Rightarrow 2x + 2y \frac{dy}{dx} + 18 - 2\frac{dy}{dx} = 0$			
M1:	substitutes $P(-5,7)$ into their equation involving $\frac{dy}{dx}$			

M1:	For reaching $(x\pm 4)^2 + (y\pm 6)^2 = P - k$ where <i>P</i> is a positive constant. Seen or implied by centre coordinates $(\mp 4, \mp 6)$ and a radius of $\sqrt{P-k}$
M1:	Applying the strategy that it lies entirely within quadrant if "their radius" < 4 and proceeding to obtain an inequality in k only (See scheme). Condone, 4 for this mark.
A1:	Deduces that $k > 36$

A rigorous argument leading to a full solution. In the context of the question the circle

Allow 36 < k, 52

exists so that as well as k > 36 $52 - k > 0 \Rightarrow 36 < k < 52$