	Either $V = 239 \times 1.18^{t}$ or imply by $a = 239, b = 1.18$	A1	1.1b
		(4)	
(b)	The value of <i>ab</i> is the (total) number of views of the advert 1 day after it went live.	B1	3.4
		(1)	
(c)	Substitutes $t = 20$ in either equation and finds V Eg $V = 239 \times 1.18^{20}$	M1	3.4
	Awrt 6500 or 6600	A1	1.1b
		(2)	
(7 marks)			
(a) Condone \log_{10} written \log or \log written throughout the question B1: Scored for showing that $\log_{10} V = 0.072t + 2.379$ can be written in the form $V = ab^t$ or vice versa Either starts with $\log_{10} V = 0.072t + 2.379$ (may be implied) and shows lines $V = 10^{0.072t + 2.379}$ and $V = 10^{0.072t} \times 10^{2.379}$ Or starts with $V = ab^t$ (implied) and shows the lines $\log_{10} V = \log_{10} a + \log_{10} b^t$ and $\log_{10} V = \log_{10} a + t \log_{10} b$			
B1:	versa Either starts with $\log_{10} V = 0.072t + 2.379$ (may be implied) and shows lin $V = 10^{0.072t + 2.379}$ and $V = 10^{0.072t} \times 10^{2.379}$ Or starts with $V = ab^{t}$ (implied) and shows the lines	nes	or vice

Scheme

 $V = ab^{t}$

 $\Rightarrow \log_{10} V = \log_{10} a + \log_{10} b^{t}$

 $\Rightarrow \log_{10} V = \log_{10} a + t \log_{10} b$

States either $\log_{10} a = 2.379$

a = 239 or b = 1.18

or $\log_{10} b = 0.072$

Marks

B1

M1

A₁

AOs

2.1

1.1b

1.1b

Question

12 (a)

A1:

A1:

(b)

B1:

(c)

 $\log_{10} V = 0.072t + 2.379$

States either $a = 10^{2379}$

or $b = 10^{0.072}$

a = 239 or b = 1.18

 $\Rightarrow V = 10^{0.072t + 2.379}$

 $\Rightarrow V = 10^{0.072t} \times 10^{2.379}$

M1: Substitutes t = 20 in either their $V = 239 \times 1.18^t$ or $\log_{10} V = 0.072t + 2.379$ and uses a correct method to find V

Finds either constant. Allow a = awrt 240 or b = awrt 1.2 following a correct method

See scheme. Condone not seeing total. Do not allow number of views at the start or similar.

Correct solution: Look for $V = 239 \times 1.18^t$ or a = 239, b = 1.18

Note that this is NOT awrt

correct method to find VAurt 6500 or 6600