Question	Scheme	Marks	AOs
13 (a)	States $(2a-b)^2 \dots 0$	M1	2.1
	$4a^2+b^24ab$	A1	1.1b
	(As $a > 0, b > 0$) $\frac{4a^2}{ab} + \frac{b^2}{ab} \dots \frac{4ab}{ab}$	M1	2.2a
	Hence $\frac{4a}{b} + \frac{b}{a} \dots 4$ * CSO	A1*	1.1b
		(4)	
(b)	$a = 5, b = -1 \Longrightarrow \frac{4a}{b} + \frac{b}{a} = -20 - \frac{1}{5}$ which is less than 4	B1	2.4
		(1)	
(5 marks)			

Notes

(a) (condone the use of > for the first three marks)

M1: For the key step in stating that
$$(2a-b)^2 \dots 0$$

A1: Reaches $4a^2 + b^2 \dots 4ab$

M1: Divides each term by
$$ab \Rightarrow \frac{4a^2}{ab} + \frac{b^2}{ab} \dots \frac{4ab}{ab}$$

A1*: Fully correct proof with steps in the correct order and gives the reasons why this is true:

- when you square any (real) number it is always greater than or equal to zero
- dividing by *ab* does not change the inequality as a > 0 and b > 0

(b)

B1: Provides a counter example and shows it is not true. This requires values, a calculation or embedded values(see scheme) and a conclusion. The conclusion must be in words eg the result does not hold or not true Allow 0 to be used as long as they explain or show that it is undefined so the statement is not true. Proof by contradiction: Scores all marks

- M1: Assume that there exists an a, b > 0 such that $\frac{4a}{b} + \frac{b}{a} < 4$
- A1: $4a^{2} + b^{2} < 4ab \Rightarrow 4a^{2} + b^{2} 4ab < 0$ M1: $(2a-b)^{2} < 0$

A1*: States that this is not true, hence we have a contradiction so $\frac{4a}{b} + \frac{b}{a} \dots 4$ with the following reasons given:

- when you square any (real) number it is always greater than or equal to zero
- dividing by *ab* does not change the inequality as a > 0 and b > 0

Attempt starting with the left-hand side

M1:
$$(lhs=)\frac{4a}{b} + \frac{b}{a} - 4 = \frac{4a^2 + b^2 - 4ab}{ab}$$

A1:
$$=\frac{(2a-b)^2}{ab}$$

M1:
$$=\frac{(2a-b)^2}{ab}\dots 0$$

A1*: Hence $\frac{4a}{b} + \frac{b}{a} - 4 \dots 0 \Rightarrow \frac{4a}{b} + \frac{b}{a} \dots 4$ with the following reasons given:

• when you square any (real) number it is always greater than or equal to zero

• ab is positive as a > 0 and b > 0

Attempt using given result: For 3 out of 4 $\frac{4a}{b} + \frac{b}{a} ..4 \qquad M1 \Rightarrow 4a^{2} + b^{2} ..4abb \Rightarrow 4a^{2} + b^{2} - 4ab ...0$ $A1 \Rightarrow (2a-b)^{2} ...0 \text{ oe}$ M1 gives both reasons why this is true $\bullet \text{ "square numbers are greater than or equal to 0"}$ $\bullet \text{ "multiplying by } ab \text{ does not change the sign of the inequality because } a \text{ and } b \text{ are positive"}$