Question	Scheme	Marks	AOs
3	$\int \frac{3 x^{4}-4}{2 x^{3}} \mathrm{~d} x=\int \frac{3}{2} x-2 x^{-3} \mathrm{~d} x$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$=\frac{3}{2} \times \frac{x^{2}}{2}-2 \times \frac{x^{-2}}{-2} \quad(+c)$	dM1	3.1a
	$=\frac{3}{4} x^{2}+\frac{1}{x^{2}}+c \quad$ o.e	A1	1.1b
		(4)	
(4 marks)			

Notes:

(i)

M1: Attempts to divide to form a sum of terms. Implied by two terms with one correct index. $\int \frac{3 x^{4}}{2 x^{3}}-\frac{4}{2 x^{3}} \mathrm{~d} x$ scores this mark.

A1: $\int \frac{3}{2} x-2 x^{-3} \mathrm{~d} x$ o.e such as $\frac{1}{2} \int\left(3 x-4 x^{-3}\right) \mathrm{d} x$. The indices must have been processed on both terms. Condone spurious notation or lack of the integral sign for this mark.
dM1: For the full strategy to integrate the expression. It requires two terms with one correct index.
Look for $=a x^{p}+b x^{q}$ where $p=2$ or $q=-2$
A1: Correct answer $\frac{3}{4} x^{2}+\frac{1}{x^{2}}+c$ o.e. such as $\frac{3}{4} x^{2}+x^{-2}+c$

