Question	Scheme	Marks	AOs
14 (a)	$f(x) = -3x^{2} + 12x + 8 = -3(x \pm 2)^{2} + \dots$	M1	1.1b
	$=-3(x-2)^{2}+$	A1	1.1b
	$=-3(x-2)^2+20$	A1	1.1b
		(3)	
(b)	Coordinates of $M = (2, 20)$	B1ft B1ft	1.1b 2.2a
		(2)	
(c)	$\int -3x^2 + 12x + 8 dx = -x^3 + 6x^2 + 8x$	M1 A1	1.1b 1.1b
	Method to find R = their $2 \times 20 - \int_0^2 \left(-3x^2 + 12x + 8\right) dx$	M1	3.1a
	$R = 40 - \left\lfloor -2^3 + 24 + 16 \right\rfloor$	dM1	1.1b
	= 8	A1	1.1b
		(5)	
	·	(10 n	narks)
Alt(c)	$3x^2 - 12x + 12 \mathrm{d}x = x^3 - 6x^2 + 12x$	M1 A1	1.1b 1.1b
	Method to find $R = \int_{0}^{2} 3x^{2} - 12x + 12 dx$	M1	3.1a
	$R = 2^3 - 6 \times 2^2 + 12 \times 2$	dM1	1.1b
	= 8	A1	1.1b
Notes:			

Notes

(a)

M1: Attempts to take out a common factor and complete the square. Award for $-3(x \pm 2)^2 + ...$ Alternatively attempt to compare $-3x^2 + 12x + 8$ to $ax^2 + 2abx + ab^2 + c$ to find values of a and b

A1: Proceeds to a form $-3(x-2)^2 + \dots$ or via comparison finds a = -3, b = -2

A1:
$$-3(x-2)^2 + 20$$

(b)

B1ft: One correct coordinate

B1ft: Correct coordinates. Allow as x = ..., y = ...Follow through on their (-b, c)

(c)

M1: Attempts to integrate. Award for any correct index

A1:
$$-3x^2 + 12x + 8 dx = -x^3 + 6x^2 + 8x (+ c) (which may be unsimplified)$$

M1: Method to find area of *R*. Look for their $2 \times "20" - \int_{0}^{2} f(x) dx$

dM1: Correct application of limits on their integrated function. Their 2 must be used

A1: Shows that area of R = 8