Question	Scheme	Marks	AOs
15 (a)	Deduces the line has gradient "-3" and point (7,4) Eg $y-4 = -3(x-7)$	M1	2.2a
	y = -3x + 25	A1	1.1b
		(2)	
(b)	Solves $y = -3x + 25$ and $y = \frac{1}{3}x$ simultaneously	M1	3.1a
	$P = \left(\frac{15}{2}, \frac{5}{2}\right) $ oe	A1	1.1b
	Length $PN = \sqrt{\left(\frac{15}{2} - 7\right)^2 + \left(4 - \frac{5}{2}\right)^2} = \left(\sqrt{\frac{5}{2}}\right)$	M1	1.1b
	Equation of <i>C</i> is $(x-7)^2 + (y-4)^2 = \frac{5}{2}$ o.e.	A1	1.1b
		(4)	
(c)	Attempts to find where $y = \frac{1}{3}x + k$ meets C using vectors		
	Eg: $\binom{7.5}{2.5} + 2 \times \binom{-0.5}{1.5}$	M1	3.1a
	Substitutes their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y = \frac{1}{3}x + k$ to find k	M1	2.1
	$k = \frac{10}{3}$	A1	1.1b
		(3)	
			(9 marks)
(c)	Attempts to find where $y = \frac{1}{3}x + k$ meets C via		
	simultaneous equations proceeding to a 3TQ in x (or y)	M1	3.1a
	FYI $\frac{10}{9}x^2 + \left(\frac{2}{3}k - \frac{50}{3}\right)x + k^2 - 8k + \frac{125}{2} = 0$		
	Uses $b^2 - 4ac = 0$ oe and proceeds to $k =$	M1	2.1
	$k = \frac{10}{3}$	A1	1.1b
		(3)	
Notes:			

(a)

M1: Uses the idea of perpendicular gradients to deduce that gradient of *PN* is -3 with point (7,4) to find the equation of line *PN*

So sight of y-4=-3(x-7) would score this mark

If the form y = mx + c is used expect the candidates to proceed as far as c = ... to score this mark.

(b)

M1: Awarded for an attempt at the key step of finding the coordinates of point *P*. ie for an attempt at solving their y = -3x + 25 and $y = \frac{1}{3}x$ simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates.

A1:
$$P = \left(\frac{15}{2}, \frac{5}{2}\right)$$

M1: Uses Pythagoras' Theorem to find the radius or radius ² using their $P = \left(\frac{15}{2}, \frac{5}{2}\right)$ and (7, 4). There must be an attempt to find the difference between the coordinates in the use of Pythagoras

A1: Full and careful work leading to a correct equation. Eg $(x-7)^2 + (y-4)^2 = \frac{5}{2}$ or its expanded form. Do not accept $(x-7)^2 + (y-4)^2 = \left(\sqrt{\frac{5}{2}}\right)^2$

(c)

M1: Attempts to find where $y = \frac{1}{3}x + k$ meets *C* using a vector approach

M1: For a full method leading to k. Scored for substituting their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y = \frac{1}{3}x + k$

A1: $k = \frac{10}{3}$ only

Alternative I

M1: For solving $y = \frac{1}{3}x + k$ with their $(x-7)^2 + (y-4)^2 = \frac{5}{2}$ and creating a quadratic eqn of the form $ax^2 + bx + c = 0$ where both *b* and *c* are dependent upon *k*. The terms in x^2 and *x* must be collected together or implied to have been collected by their correct use in " $b^2 - 4ac$ "

FYI the correct quadratic is
$$\frac{10}{9}x^2 + \left(\frac{2}{3}k - \frac{50}{3}\right)x + k^2 - 8k + \frac{125}{2} = 0$$
 or

M1: For using the discriminant condition $b^2 - 4ac = 0$ to find k. It is not dependent upon the previous M and may be awarded from only one term in k.

Award if you see use of correct formula but it would be implied by \pm correct roots

A1:
$$k = \frac{10}{3}$$
 only

Alternative II

M1: For solving y = -3x + 25 with their $(x-7)^2 + (y-4)^2 = \frac{5}{2}$, creating a 3TQ and solving.

M1: For substituting their $\left(\frac{13}{2}, \frac{11}{2}\right)$ into $y = \frac{1}{3}x + k$ and finding k

A1:
$$k = \frac{10}{3}$$
 only