Question	Scheme	Marks	AOs
9(a)(i)	$\log_3\left(\frac{x}{9}\right) = \log_3 x - \log_3 9 = p - 2$	B1	1.2
(ii)	$\log_3\left(\sqrt{x}\right) = \frac{1}{2}p$	B1	1.1b
		(2)	
(b)	$2\log_3\left(\frac{x}{9}\right) + 3\log_3\left(\sqrt{x}\right) = -11 \Longrightarrow 2p - 4 + \frac{3}{2}p = -11 \Longrightarrow p = \dots$	M1	1.1b
	p = -2	A1	1.1b
	$\log_3 x = -2 \Longrightarrow x = 3^{-2}$	M1	1.1b
	$x = \frac{1}{9}$	A1	1.1b
		(4)	
	Alternative for (b) not using (a):		
	$2\log_3\left(\frac{x}{9}\right) + 3\log_3\left(\sqrt{x}\right) = -11 \Longrightarrow \log_3\left(\frac{x}{9}\right)^2 + \log_3\left(\sqrt{x}\right)^3 = -11$ $\Rightarrow \log_3\frac{x^{\frac{7}{2}}}{3} = -11$	M1	1.1b
	7		
	$\Rightarrow \frac{x^2}{81} = 3^{-11} \text{ or equivalent eg } x^{\frac{7}{2}} = 3^{-7}$	A1	1.1b
	$x^{\frac{7}{2}} = 81 \times 3^{-11} \Longrightarrow x^{\frac{7}{2}} = 3^4 \times 3^{-11} = 3^{-7} \Longrightarrow x = (3^{-7})^{\frac{7}{7}} = 3^{-2}$	M1	1.1b
	$x = \frac{1}{9}$	A1	1.1b
(6 marks)			
Notes			
B1: Recalls the subtraction law of logs and so obtains $p - 2$			
(a)(ii)			
B1: $\frac{1}{2}p$ oe			
(b) *Be aware this should be solved by non-calculator methods*			
M1: Uses their results from part (a) to form a linear equation in <i>p</i> and attempts to solve leading to a value for <i>p</i> . Allow slips in their rearrangement when solving. Allow a misread			

forming the equation equal to 11 instead of -11

A1: Correct value for *p*

M1: Uses $\log_3 x = p \Rightarrow x = 3^p$ following through on what they consider to be their *p*. It must be a value rather than *p*

A1: $(x=)\frac{1}{9}$ cao with correct working seen. Must be this fraction. Do not penalise invisible brackets as long as the intention is clear.

Alternative:

- M1: Correct use of log rules to achieve an equation of the form $\log_3 ... = \log_3 ...$ or $\log_3 ... = a$ number (typically -11). Condone arithmetical slips.
- A1: Correct equation with logs removed.
- M1: Uses inverse operations to find *x*. Condone slips but look for proceeding from $x^{\frac{a}{b}} = ... \Rightarrow x = ...^{\frac{b}{a}}$ where they have to deal with a fractional power.
- A1: $(x=)\frac{1}{9}$ cao with correct working seen. Must be this fraction. Do not penalise invisible brackets as long as the intention is clear.