Questi	on Scheme	Marks	AOs	
10(a)	$y = \frac{1}{3}x^2 - 2\sqrt{x} + 3 \Rightarrow \frac{dy}{dx} = \frac{2}{3}x - x^{-\frac{1}{2}}$	M1 A1	1.1b 1.1b	
	$x = 4 \Longrightarrow y = \frac{13}{3}$	B1	1.1b	
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=4} = \frac{2}{3} \times 4 - 4^{-\frac{1}{2}} \left(=\frac{13}{6}\right) \therefore \ y - \frac{13}{3} = \frac{13}{6} \left(x - 4\right)$	M1	2.1	
	13x - 6y - 26 = 0*	A1*	1.1b	
		(5)		
(b)	$\int \left(\frac{x^2}{3} - 2\sqrt{x} + 3\right) dx = \frac{x^3}{9} - \frac{4}{3}x^{\frac{3}{2}} + 3x(+c)$	M1 A1	1.1b 1.1b	
	$y = 0 \Longrightarrow x = 2$	B1	2.2a	
	Area of <i>R</i> is $\left[\frac{x^3}{9} - \frac{4}{3}x^{\frac{3}{2}} + 3x\right]_0^4 - \frac{1}{2} \times (4 - "2") \times "\frac{13}{3}" = \frac{76}{9} - \frac{13}{3}$	M1	3.1a	
	$=\frac{37}{9}$	A1	1.1b	
		(5)		
(10 marks)				
INOTES				
(a) Calculators: If no algebraic differentiation seen then maximum in a) is M0A0B1M1A0* 1 1 1				
M1:	$x^n \to x^{n-1}$ seen at least once $\dots x^2 \to \dots x^1, \ \dots x^2 \to \dots x^{-2}, \ 3 \to 0$.			
	Also accept on sight of eg $x^{\frac{1}{2}} \rightarrowx^{\frac{1}{2}-1}$			
A1:	$\frac{2}{3}x - x^{-\frac{1}{2}}$ or any unsimplified equivalent (indices must be processed) accept the use of			
	0.6x but not rounded or ambiguous values eg $0.6x$ or eg $0.66x$			
B1:	orrect y coordinate of P . May be seen embedded in an attempt of the equation of l			
M1:	Sully correct strategy for an equation for <i>l</i> . Look for $y - \frac{13}{3} = \frac{13}{6} (x-4)$ where their			
	$\frac{13}{6}$ is from differentiating the equation of the curve and substituting in $x = 4$ into their $\frac{dy}{dx}$			
A1*:	and the y coordinate is from substituting $x = 4$ into the given equation. If they use $y = mx + c$ they must proceed as far as $c =$ to score this mark. Do not allow this mark if they use a perpendicular gradient. Obtains the printed answer with no errors.			
(b) Calculators: If no algebraic integration seen then maximum in b) is M0A0B1M1A0				
M1:	11: $x^n \to x^{n+1}$ seen at least once. Eg $x^2 \tox^3$, $x^{\frac{1}{2}} \tox^{\frac{3}{2}}$, $3 \to 3x^1$. Allow eg $x^2 \tox^{2+1}$ The + <i>c</i> is not a valid term for this mark.			

- A1: ^{x³}/₉ ⁴/₃x^{3/2} + 3x or any unsimplified equivalent (indices must be processed) accept the use of exact decimals for ¹/₉ (0.1) and -⁴/₃ (-1.3) but not rounded or ambiguous values.
 B1: Deduces the correct value for x for the intersection of l with the x-axis. May be seen indicated on Figure 2.
 M1: Fully correct strategy for the area. This needs to include

 a correct attempt at the area of the triangle using their values (could use integration)
 a correct attempt at the area under the curve using 0 and 4 in their integrated expression
 - the two values subtracted.
 Be aware of those who mix up using the *y*-coordinate of *P* and the gradient at *P* which is M0. The values embedded in an expression is sufficient to score this mark.
- A1: $\frac{37}{9}$ or exact equivalent eg $4\frac{1}{9}$ or 4.1 but not 4.111.... isw after a correct answer

Be aware of other strategies to find the area *R*

eg Finding the area under the curve between 0 and 2 and then the difference between the curve and the straight line between 2 and 4:

$$\int_{0}^{2} \frac{x^{2}}{3} - 2\sqrt{x} + 3 \, dx + \int_{2}^{4} \frac{x^{2}}{3} - 2\sqrt{x} - \frac{13}{6}x + \frac{22}{3} \, dx$$

M1 $x^n \rightarrow x^{n+1}$ seen at least once on either integral (or on the equation of the line $y = \frac{1}{2}x + 3$)

A1 for correct integration of **either** integral $\frac{x^3}{9} - \frac{4}{3}x^{\frac{3}{2}} + 3x$ or $\frac{x^3}{9} - \frac{4}{3}x^{\frac{3}{2}} - \frac{13}{12}x^2 + \frac{22}{3}x$ (may

be unsimplified/uncollected terms but the indices must be processed with/without the +C)

- B1 Correct value for *x* can be seen from the top of the first integral (or bottom value of the second integral)
- M1 Correct strategy for the area eg.

$$\left[\frac{x^{3}}{9} - \frac{4}{3}x^{\frac{3}{2}} + 3x\right]_{0}^{2} + \left[\frac{x^{3}}{9} - \frac{4}{3}x^{\frac{3}{2}} - \frac{13}{12}x^{2} + \frac{22}{3}x\right]_{2}^{4} = \frac{62}{9} - \frac{4}{3}(2)^{\frac{3}{2}} + \frac{76}{9} - \frac{101}{9} + \frac{4}{3}(2)^{\frac{3}{2}}$$

A1: $\frac{37}{9}$ or exact equivalent eg $4\frac{1}{9}$ or 4.1 but not 4.1 or 4.111....

You could also see use of the area of a trapezium and/or the use of the line $y = \frac{1}{3}x + 3$ to find other areas which could be combined or used as part of the strategy to find *R*. Ignore areas

which are not used. The marks should still be able to be applied as per the scheme Area of large trapezium $=\frac{1}{2} \times \left(3 + \frac{13}{3}\right) \times 4 = \frac{44}{3}$ 3 $y = \frac{1}{3}x + 3$ Area of triangle and the y 2 4 Give BOD if in doubt of intention Area of trapezium – (Area between $y = \frac{1}{3}x + 3$ and curve C + area of triangle) $=\frac{44}{3} - \frac{56}{9} - \frac{13}{3} = \frac{37}{9}$