	(3)	
	(3 n	narks)
Notes:		
M1: Takes logs of both sides and applies the power law to both sides.		
E.g. $2^{5k+3} = 3^{550} \Rightarrow (5k+3) = 550 \log_2 3$. Condone a missing bracket.		
The same base log must be applied to both sides, usually $\log = \log_{10}$, \log_2 or \log_2	g_3	
dM1: Full and complete method to find the value of k .		
The bracket must be present or working sufficient to imply its presence.		

Correct **order** of operations to find k. So look for $(5k+3) = \frac{550 \log 3}{\log 2} \Rightarrow 5k = \frac{550 \log 3}{\log 2} \mp 3 \Rightarrow k = \dots$

Note the demand in the question. Trial and error and other such attempts are unlikely to score marks.

Scheme

 $2^{5k+3} = 3^{550} \Rightarrow (5k+3)\log 2 = 550\log 3$

 $\Rightarrow (5k+3) = \frac{550\log 3}{\log 2} \Rightarrow k = \dots$

 $\Rightarrow k = 173.7$

Marks

M1

dM1

A1

AOs

1.1b

2.1

1.1b

Question

3

A1: Awrt 173.7