Question	Scheme	Marks	AOs
5 (a)	$2 \times 4^{x} + 2^{x+3} = 1 + 2^{x-2}$		
	Uses an index law and states or implies any of $4^{x} = p^{2}, 2^{x+3} = 8p \text{ or } 2^{x-2} = \frac{p}{4}$	B1	1.1b
	Writes the given equation in terms of p $2 \times 4^{x} + 2^{x+3} = 1 + 2^{x-2} \Longrightarrow 2p^{2} + 2^{3} \times p = 1 + \frac{p}{2^{2}}$	M1	1.1b
	Proceeds to $8p^2 + 31p - 4 = 0$ via $2p^2 + 8p = 1 + \frac{p}{4}$ *	A1*	2.1
		(3)	
(b)	$8p^{2} + 31p - 4 = 0 \Longrightarrow (8p - 1)(p + 4) = 0$	M1	1.1b
	Sets $2^x = \frac{1}{8}, > 4 \Rightarrow x =$	M1	1.1b
	x = -3 only cso	A1	2.3
		(3)	
(6 marks)			

Notes:

(a)

B1: Uses an index law and states or implies any of $4^x = p^2$, $2^{x+3} = 8p$ or $2^{x-2} = \frac{p}{4}$

M1: Attempts to write the given equation in terms of p

 $2 \times 4^{x} + 2^{x+3} = 1 + 2^{x-2} \Longrightarrow 2p^{2} + 2^{3} \times p = 1 + \frac{p}{2^{2}}$

Condone slips on signs or the 2^3 if there was an attempt to process.

 $2 \times 4^{x} + 2^{x+3} = 1 + 2^{x-2} \Longrightarrow 2p^{2} + 6p = 1 + \frac{p}{2^{2}}$ would be fine for the M1

A1*: Proceeds to the given answer of $8p^2 + 31p - 4 = 0$ with no errors or omissions.

An intermediate line of $2p^2 + 8p = 1 + \frac{p}{4}$ o.e. must be seen.

(b)

- **M1:** Valid non calculator attempt at solving $8p^2 + 31p 4 = 0$
- **M1:** Valid non calculator attempt at solving an equation of the form $2^{x} = k$, k > 0

Allow for this mark $2^{x} = k \Longrightarrow x = \log_{2} k$

A1: CSO x = -3 only. There should not be any solutions arising from $2^{x} = -4$