Question	Scheme	Marks	AOs
6.	$P \xrightarrow{(-5, -5)} R$		
6(a)	Attempts gradient $PQ = \frac{15}{75}$ AND gradient $QR = \frac{13}{7-9}$	M1	3.1a
	Attempts gradient $PQ \times \text{gradient } QR = \frac{1}{2} \times \frac{-2}{1}$	dM1	1.1b
	States gradient $PQ \times$ gradient $QR = -1$, hence angle $PQR = 90^{\circ} *$	A1*	2.4
		(3)	
(b)	Deduces that centre of circle is $(2, -4)$	B1	2.2a
	Correct method for finding radius, radius ² , diameter or diameter ² E.g. $\sqrt{(95)^2 + (-35)^2} = \sqrt{200}$	M1	1.1b
	Correct equation for C E.g. $(x-2)^2 + (y+4)^2 = 50$	A1	1.1b
		(3)	
	1	(6 n	narks)

Notes:

(a)

M1: Selects a valid method that will enable the problem to be solved. See scheme.

It must be an attempt at $\frac{\delta y}{\delta x}$ but condone slips

Also allow an attempt at finding the three lengths PQ, QR and PR or the lengths²

Look for "a difference in coordinates" and "squaring" but condone slips

dM1: Correct attempt at proof. Attempts to multiply the gradients or similar

Also allow and attempt at finding $PQ^2 + QR^2$ and comparing it to PR^2

A1*: Full explanation with correct reason. All calculations must be correct. Condone a \checkmark for conclusion

(b)

B1: Deduces that *PR* is the diameter of the circle thus giving the midpoint (2, -4) as the centre of *C*.

May be implied from equation of circle

M1: Correct method for finding radius, radius², diameter or diameter²

E.g. Finds the distance² between their
$$(2, -4)$$
 and one of the given points

A1:
$$(x-2)^{2} + (y+4)^{2} = 50$$
 o.e.