Question	Scheme	Marks	AOs
8	$g'(x) = 6x^{2} + 5x + k \Longrightarrow g(x) = 2x^{3} + \frac{5}{2}x^{2} + kx + c$	M1	1.1b
		A1	1.1b
	Sets " c " = -10	B1	1.1b
	Sets $g(-4) = 0 \Longrightarrow 2 \times -64 + \frac{5}{2} \times 16 - 4k - 10 = 0$	M1	3.1a
	Solves linear equation in k E.g. $2 \times -64 + \frac{5}{2} \times 16 - 4k - 10 = 0 \Longrightarrow k =$	M1	1.1b
	$g(x) = 2x^3 + \frac{5}{2}x^2 - \frac{49}{2}x - 10$	A1	2.1
		(6)	
	(6 marks)		
Notes:			

M1: Integrates g'(x) with two correct indices. There is no requirement for the +c

Condone unprocessed terms for this mark. E.g px^{2+1}

A1: Fully correct integration. It may be unsimplified but the +c must be seen (or implied by the -10)

B1: Sets the constant term = -10

M1: Dependent upon having done some correct integration (seen on at least one term).

It is for the setting up a linear equation in *k* by using g(-4) = 0

M1: Solves the linear equation in k.

It is dependent upon having attempted some integration and used $g(\pm 4) = 0$

A1: Accurate and careful work leading to $g(x) = 2x^3 + \frac{5}{2}x^2 - \frac{49}{2}x - 10$ or exact simplified equivalent

It is possible to use the information about the factor first.

M1A1: Deduces $g(x) = (x+4)(Ax^2 + Bx + C)$ B1: $g(x) = Ax^3 + (4A+B)x^2 + (4B+C)x + 4C$ and deduces $C = -\frac{5}{2}$ (as intercept is -10)

M1: Differentiates $g'(x) = 3Ax^2 + 2(4A+B)x + (4B+C)$ and compares to $g'(x) = 6x^2 + 5x + k \Rightarrow A = ...$ M1: Full method to get *A*, *B* and *C*

A1: Accurate and careful work leading to $g(x) = (x+4)\left(2x^2 - \frac{11}{2}x - \frac{5}{2}\right)$