Question	Scheme	Marks	AOs
14 (a)	x > -4	B1	1.1b
		(1)	
(b)	$(x+4)(2x^{2}+x+7) = 2x^{3}+9x^{2}+11x+28$	M1 A1	1.1b 1.1b
		(2)	
(c)	Deduces that equation of <i>l</i> is $y = kx + 28$	B1ft	1.1b
	Sets $2x^3 + 9x^2 + 11x + 28 = kx + 28$ and proceeds to quadratic eqn.	M1	3.1a
	$2x^2 + 9x + (11 - k) = 0$	A1	1.1b
	Uses $b^2 - 4ac = 0 \Longrightarrow 81 - 8(11 - k) = 0$	M1	2.1
	$k = \frac{7}{8}$	A1	1.1b
		(5)	
	3)		

Notes:

(a)

B1: As scheme. Allow in words

(b)

M1: For an attempt to expand.

Award for a cubic with the "first term" $2x^3$, constant term 28 and some intermediate term(s) **A1:** Fully correct (any order) but must be simplified

(c)

B1ft: Deduces that *l* has equation y = kx + 28 following through on their "28"

M1: Sets their $2x^3 + 9x^2 + 11x + 28 =$ their kx + 28 and proceeds to quadratic eqn.

They may just take out a factor of x which is acceptable

A1: Correct quadratic $2x^2 + 9x + (11-k) = 0$

M1: For the key step in realising that it is a tangent when $b^2 - 4ac = 0$ and uses it to forming a linear equation in *k*.

A1:
$$k = \frac{7}{8}$$
 o.e.