Question	Scheme	Marks	AOs
15 (a)	$y = \frac{3x}{2} + 32x^{-\frac{3}{2}} \Longrightarrow \frac{dy}{dx} = \frac{3}{2} - 48x^{-\frac{5}{2}}$	M1 A1	1.1b 1.1b
	Substitute $x = 4 \Rightarrow \frac{dy}{dx} = \frac{3}{2} - 48 \times 4^{-\frac{5}{2}}$	M1	1.1b
	$\frac{dy}{dx} = \frac{3}{2} - 48 \times \frac{1}{32} = 0 \Longrightarrow \text{ stationary point at } x = 4 \text{ *}$	A1*	2.1
		(4)	
(b)	$\int \frac{3x}{2} + 32x^{-\frac{3}{2}} dx = \frac{3x^2}{4} - 64x^{-\frac{1}{2}}$	M1 A1	1.1b 1.1b
	States or uses $y=10$ as the equation for l	B1	1.1b
	Area $R = \left[\frac{3x^2}{4} - 64x^{-\frac{1}{2}}\right]_4^8 - 4 \times y_{x=4}$	dM1	3.1a
	$= 28 - 16\sqrt{2}$	A1	1.1b
		(5)	
(9 marks)			

Notes:

(a)

M1: Attempts to differentiate. Look for either $\frac{3x}{2} \rightarrow \frac{3}{2}$ or $x^{-\frac{3}{2}} \rightarrow x^{-\frac{5}{2}}$

Condone unprocessed terms for this mark

A1: Correct differentiation. This may be left unsimplified

M1: Either substitutes x = 4 into their $\frac{dy}{dx}$ and finds its value

Or alternatively attempts to solve $\frac{dy}{dx} = 0$

A1*: Complete proof showing that the stationary point is at x = 4

This requires (1) correct differentiation (2) correct calculations shown (see scheme) (3) reason given

(b)

M1: Attempts to integrate. Look for one correct index (which may be left unprocessed)

If they attempt $\int (y_1 - y_2) dx$ where $y_2 = "10"$ just consider $\int y_1 dx$

A1: Correct integration which may be left unsimplified. No requirement for + c

B1: States or uses y = 10 as the equation for *l*. This is implied by sight of 4×10 in area calculation **dM1**: Full method to find area for *R*.

