Question

(a) $(6,-5)$ and $(2,1)$

Attempts to find the gradient of $l_{1}: m=\frac{1--5}{2-6}=-\frac{3}{2}$	M1	1.1b
$y-1=-\frac{3}{2}(x-2) \text { or } y--5=-\frac{3}{2}(x-6)$	dM1	1.1b
$y=-\frac{3}{2} x+4$	A1	1.1b
	(3)	
$l_{2}: y=\frac{2}{3} x$	B1ft	2.2a
Attempts to solve $y=-\frac{3}{2} x+4$ and $y=\frac{2}{3} x$ simultaneously $\frac{2}{3} x=-\frac{3}{2} x+4$ leading to $x=\ldots$	M1	1.1a
$x=\frac{24}{13}$	A1	1.1b
$\left(\frac{24}{13}, \frac{16}{13}\right)$	A1	1.1b
	(4)	

Notes:

(a) M1: Attempts to find the gradient of l_{1} using $\frac{\Delta y}{\Delta x}$. Condone one sign error e.g., $\frac{6}{4}$
dM1: $y-y_{1}=m\left(x-x_{1}\right)$ with either $(6,-5)$ or $(2,1)$ and their $m="-\frac{3}{2} "$
If $y=m x+c$ is used they must proceed as far as $c=\ldots$
A1: $y=-\frac{3}{2} x+4$ or $y=4-\frac{3}{2} x$ only.
(b) B1ft: Deduces the equation of l_{2} is $y=\frac{-1}{"-\frac{3}{2} "} x$

M1: Attempts to solve their $y=-\frac{3}{2} x+4$ and their $y=\frac{2}{3} x$ simultaneously $" \frac{2}{3} x "="-\frac{3}{2} x+4$ " leading to $x=\ldots$ May be implied by their values
A1: $x=\frac{24}{13}$ or $y=\frac{16}{13}$ Condone non-recurring decimals given, e.g. $x=$ awrt 1.85 or $y=$ awrt 1.23 here.
A1: $\left(\frac{24}{13}, \frac{16}{13}\right)$. Accept $x=\frac{24}{13}, y=\frac{16}{13}$.

