Question	Scheme	Marks	AOs
1(a)	(6,-5) and $(2,1)$		
	Attempts to find the gradient of l_1 : $m = \frac{15}{2 - 6} = -\frac{3}{2}$	M1	1.1b
	$y-1 = -\frac{3}{2}(x-2)$ or $y-5 = -\frac{3}{2}(x-6)$	dM1	1.1b
	$y = -\frac{3}{2}x + 4$	A1	1.1b
		(3)	
(b)	$l_2: y = \frac{2}{3}x$	B1ft	2.2a
	Attempts to solve $y = -\frac{3}{2}x + 4$ and $y = \frac{2}{3}x$ simultaneously $\frac{2}{3}x = -\frac{3}{2}x + 4$ leading to $x =$	M1	1.1a
	$x = \frac{24}{13}$	A1	1.1b
	$\left(\frac{24}{13},\frac{16}{13}\right)$	A1	1.1b
		(4)	
(7 marks)			
Notes:			
(a) M1: Attempts to find the gradient of l_1 using $\frac{\Delta y}{\Delta x}$. Condone one sign error e.g., $\frac{6}{4}$			
dM1: $y - y_1 = m(x - x_1)$ with either (6, -5) or (2, 1) and their $m = "-\frac{3}{2}"$			
If $y = mx + c$ is used they must proceed as far as $c =$			
A1: $y = -\frac{3}{2}x + 4$ or $y = 4 - \frac{3}{2}x$ only.			
(b) B1ft: Deduces the equation of l_2 is $y = \frac{-1}{"-\frac{3}{2}"}x$			
M1: Attempts to solve their $y = -\frac{3}{2}x + 4$ and their $y = \frac{2}{3}x$ simultaneously			
" $\frac{2}{3}x$ " = " $-\frac{3}{2}x + 4$ " leading to $x =$ May be implied by their values			
A1: $x = \frac{24}{13}$ or $y = \frac{16}{13}$ Condone non-recurring decimals given, e.g. $x = awrt 1.85$ or $y = awrt 1.23$			
here. $(24 \ 16)$ $24 \ 16$			
A1: $\left \frac{1}{10}, \frac{1}{10}\right $. Accept $x = \frac{24}{10}, y = \frac{10}{10}$.			

A1: $\left(\frac{24}{13}, \frac{16}{13}\right)$. Accept $x = \frac{24}{13}, y = \frac{16}{13}$